Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT
  Cementite decomposition in 100Cr6 bearing steel during high-pressure torsion: Influence of precipitate composition, size, morphology and matrix hardness

Srikakulapu, K., Tung, P.-Y., Sreekala, L., Prithiv, T. S., Hickel, T., Pippan, R., et al. (2022). Cementite decomposition in 100Cr6 bearing steel during high-pressure torsion: Influence of precipitate composition, size, morphology and matrix hardness. Materials Science and Engineering A: Structural Materials Properties Microstructure and Processing, 833: 142372. doi:10.1016/j.msea.2021.142372.

Item is

Basisdaten

einblenden: ausblenden:
Genre: Zeitschriftenartikel

Externe Referenzen

einblenden:

Urheber

einblenden:
ausblenden:
 Urheber:
Srikakulapu, Kiranbabu1, Autor           
Tung, Po-Yen2, Autor           
Sreekala, Lekshmi3, Autor           
Prithiv, Thoudden Sukumar4, Autor           
Hickel, Tilmann3, Autor           
Pippan, Reinhard5, Autor           
Morsdorf, Lutz2, Autor           
Herbig, Michael1, Autor           
Affiliations:
1Materials Science of Mechanical Contacts, Project Groups, Microstructure Physics and Alloy Design, Max-Planck-Institut für Eisenforschung GmbH, Max Planck Society, ou_2324693              
2Materials Science of Mechanical Contacts, Microstructure Physics and Alloy Design, Max-Planck-Institut für Eisenforschung GmbH, Max Planck Society, ou_2324693              
3Computational Phase Studies, Computational Materials Design, Max-Planck-Institut für Eisenforschung GmbH, Max Planck Society, ou_1863341              
4Mechanism-based Alloy Design, Microstructure Physics and Alloy Design, Max-Planck-Institut für Eisenforschung GmbH, Max Planck Society, ou_1863383              
5Erich Schmid Institute of Materials Science, Austrian Academy of Sciences and Department Material Physics, Leoben, Austria, ou_persistent22              

Inhalt

einblenden:
ausblenden:
Schlagwörter: Copper; Density functional theory; Dislocations (crystals); Etching; Failure (mechanical); Hardness; Manganese; Microstructure; Morphology; Pearlite; Plastic deformation; Shear strain; Spheres; Steel; Torsional stress, Bearing steels; Cementite decomposition; Cementite precipitates; Decomposition behaviors; Density functional theory; Density-functional-theory; Matrix hardness; Pearlitic steels; Severe plastic deformation; Severe plastic deformations, Carbides
 Zusammenfassung: Premature failure of rail and bearing steels by White-Etching-Cracks leads to severe economic losses. This failure mechanism is associated with microstructure decomposition via local severe plastic deformation. The decomposition of cementite plays a key role. Due to the high hardness of this phase, it is the most difficult obstacle to overcome in the decaying microstructure. Understanding the mechanisms of carbide decomposition is essential for designing damage-resistant steels for industrial applications. We investigate cementite decomposition in the bearing steel 100Cr6 (AISI 52100) upon exposure to high-pressure torsion (maximum shear strain, Ƴmax = 50.2). Following-up on our earlier work on cementite decomposition in hardened 100Cr6 steel (Qin et al., Act. Mater. 2020 [1]), we now apply a modified heat treatment to generate a soft-annealed microstructure where spherical and lamellar cementite precipitates are embedded in a ferritic matrix. These two precipitate types differ in morphology (spherical vs. lamellar), size (spherical: 100–1000 nm diameter, lamellar: 40–100 nm thickness) and composition (Cr and Mn partitioning). We unravel the correlation between cementite type and its resistance to decomposition using multi-scale chemical and structural characterization techniques. Upon high-pressure torsion, the spherical cementite precipitates did not decompose, but the larger spherical precipitates (≥ 1 μm) deformed. In contrast, the lamellar cementite precipitates underwent thinning followed by decomposition and dissolution. Moreover, the decomposition behavior of cementite precipitates is affected by the type of matrix microstructure. We conclude that the cementite size and morphology, as well as the matrix mechanical properties are the predominating factors influencing the decomposition behavior of cementite. The compositional effects of Cr and Mn on cementite stability calculated by complementary density functional theory (DFT) calculations are minor in the current scenario. © 2021 Elsevier B.V.

Details

einblenden:
ausblenden:
Sprache(n): eng - English
 Datum: 2022-01-26
 Publikationsstatus: Erschienen
 Seiten: -
 Ort, Verlag, Ausgabe: -
 Inhaltsverzeichnis: -
 Art der Begutachtung: Expertenbegutachtung
 Identifikatoren: DOI: 10.1016/j.msea.2021.142372
 Art des Abschluß: -

Veranstaltung

einblenden:

Entscheidung

einblenden:

Projektinformation

einblenden:

Quelle 1

einblenden:
ausblenden:
Titel: Materials Science and Engineering A: Structural Materials Properties Microstructure and Processing
  Kurztitel : Mater. Sci. Eng. A: Struct. Mater. Prop. Microstruct. Process.
Genre der Quelle: Zeitschrift
 Urheber:
Affiliations:
Ort, Verlag, Ausgabe: Amsterdam : Elsevier B.V.
Seiten: - Band / Heft: 833 Artikelnummer: 142372 Start- / Endseite: - Identifikator: ISSN: 0921-5093
CoNE: https://pure.mpg.de/cone/journals/resource/954928498465_1