English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT
  The orbit method for locally nilpotent infinite-dimensional Lie algebras

Ignatyev, M., & Petukhov, A. (2021). The orbit method for locally nilpotent infinite-dimensional Lie algebras. Journal of Algebra, 585, 501-557. doi:10.1016/j.jalgebra.2021.06.013.

Item is

Files

show Files
hide Files
:
2004.01068.pdf (Preprint), 1009KB
 
File Permalink:
-
Name:
2004.01068.pdf
Description:
File downloaded from arXiv at 2022-02-16 14:29
OA-Status:
Visibility:
Private
MIME-Type / Checksum:
application/pdf
Technical Metadata:
Copyright Date:
-
Copyright Info:
-
:
Ignatyav-Petukhov_The orbit method for locally nilpotent infinite-dimensional Lie algebras_2021.pdf (Publisher version), 2MB
 
File Permalink:
-
Name:
Ignatyav-Petukhov_The orbit method for locally nilpotent infinite-dimensional Lie algebras_2021.pdf
Description:
-
OA-Status:
Visibility:
Restricted ( Max Planck Society (every institute); )
MIME-Type / Checksum:
application/pdf
Technical Metadata:
Copyright Date:
-
Copyright Info:
-
License:
-

Locators

show
hide
Locator:
https://doi.org/10.1016/j.jalgebra.2021.06.013 (Publisher version)
Description:
-
OA-Status:
Not specified
Description:
-
OA-Status:
Green

Creators

show
hide
 Creators:
Ignatyev, Mikhail‏1, Author           
Petukhov, Alexey, Author
Affiliations:
1Max Planck Institute for Mathematics, Max Planck Society, ou_3029201              

Content

show
hide
Free keywords: Mathematics, Representation Theory, Rings and Algebras
 Abstract: Let $\mathfrak{n}$ be a locally nilpotent infinite-dimensional Lie algebra
over $\mathbb{C}$. Let $\mathrm{U}(\mathfrak{n})$ and
$\mathrm{S}(\mathfrak{n})$ be its universal enveloping algebra and its
symmetric algebra respectively. Consider the Jacobson topology on the primitive
spectrum of $\mathrm{U}(\mathfrak{n})$ and the Poisson topology on the
primitive Poisson spectrum of $\mathrm{S}(\mathfrak{n})$. We provide a
homeomorphism between the corresponding topological spaces (on the level of
points, it gives a bijection between the primitive ideals of
$\mathrm{U}(\mathfrak{n})$ and $\mathrm{S}(\mathfrak{n})$). We also show that
all primitive ideals of $\mathrm{S}(\mathfrak{n})$ from an open set in a
properly chosen topology are generated by their intersections with the Poisson
center. Under the assumption that $\mathfrak{n}$ is a nil-Dynkin Lie algebra,
we give two criteria for primitive ideals
$I(\lambda)\subset\mathrm{S}(\mathfrak{n})$ and
$J(\lambda)\subset\mathrm{U}(\mathfrak{n})$, $\lambda\in\mathfrak{n}^*$, to be
nonzero. Most of these results generalize the known facts about primitive and
Poisson spectrum for finite-dimensional nilpotent Lie algebras (but note that
for a finite-dimensional nilpotent Lie algebra all primitive ideals
$I(\lambda)$, $J(\lambda)$ are nonzero).

Details

show
hide
Language(s): eng - English
 Dates: 2021
 Publication Status: Issued
 Pages: -
 Publishing info: -
 Table of Contents: -
 Rev. Type: Peer
 Identifiers: arXiv: 2004.01068
DOI: 10.1016/j.jalgebra.2021.06.013
 Degree: -

Event

show

Legal Case

show

Project information

show

Source 1

show
hide
Title: Journal of Algebra
Source Genre: Journal
 Creator(s):
Affiliations:
Publ. Info: Elsevier
Pages: - Volume / Issue: 585 Sequence Number: - Start / End Page: 501 - 557 Identifier: -