Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT
  Robust learning from corrupted EEG with dynamic spatial filtering

Banville, H., Wood, S. U., Aimone, C., Engemann, D. A., & Gramfort, A. (2022). Robust learning from corrupted EEG with dynamic spatial filtering. NeuroImage, 251: 118994. doi:10.1016/j.neuroimage.2022.118994.

Item is

Basisdaten

einblenden: ausblenden:
Genre: Zeitschriftenartikel

Dateien

einblenden: Dateien
ausblenden: Dateien
:
Banville_pre.pdf (Preprint), 8MB
Name:
Banville_pre.pdf
Beschreibung:
-
OA-Status:
Gold
Sichtbarkeit:
Öffentlich
MIME-Typ / Prüfsumme:
application/pdf / [MD5]
Technische Metadaten:
Copyright Datum:
-
Copyright Info:
-
Lizenz:
-

Externe Referenzen

einblenden:

Urheber

einblenden:
ausblenden:
 Urheber:
Banville, Hubert1, 2, Autor
Wood, Sean U.N.2, Autor
Aimone, Chris2, Autor
Engemann, Denis A.1, 3, Autor           
Gramfort, Alexandre1, Autor
Affiliations:
1Université Paris-Saclay, France, ou_persistent22              
2InteraXon Inc., Toronto, ON, Canada, ou_persistent22              
3Department Neurology, MPI for Human Cognitive and Brain Sciences, Max Planck Society, ou_634549              

Inhalt

einblenden:
ausblenden:
Schlagwörter: Electroencephalography; Mobile EEG; Deep learning; Machine learning; Noise robustness
 Zusammenfassung: Building machine learning models using EEG recorded outside of the laboratory setting requires methods robust to noisy data and randomly missing channels. This need is particularly great when working with sparse EEG montages (1-6 channels), often encountered in consumer-grade or mobile EEG devices. Neither classical machine learning models nor deep neural networks trained end-to-end on EEG are typically designed or tested for robustness to corruption, and especially to randomly missing channels. While some studies have proposed strategies for using data with missing channels, these approaches are not practical when sparse montages are used and computing power is limited (e.g., wearables, cell phones). To tackle this problem, we propose dynamic spatial filtering (DSF), a multi-head attention module that can be plugged in before the first layer of a neural network to handle missing EEG channels by learning to focus on good channels and to ignore bad ones. We tested DSF on public EEG data encompassing 4,000 recordings with simulated channel corruption and on a private dataset of 100 at-home recordings of mobile EEG with natural corruption. Our proposed approach achieves the same performance as baseline models when no noise is applied, but outperforms baselines by as much as 29.4% accuracy when significant channel corruption is present. Moreover, DSF outputs are interpretable, making it possible to monitor the effective channel importance in real-time. This approach has the potential to enable the analysis of EEG in challenging settings where channel corruption hampers the reading of brain signals.

Details

einblenden:
ausblenden:
Sprache(n): eng - English
 Datum: 2022-02-032021-09-292022-02-112022-02-162022-05-01
 Publikationsstatus: Erschienen
 Seiten: -
 Ort, Verlag, Ausgabe: -
 Inhaltsverzeichnis: -
 Art der Begutachtung: -
 Identifikatoren: DOI: 10.1016/j.neuroimage.2022.118994
Anderer: epub 2022
PMID: 35181552
 Art des Abschluß: -

Veranstaltung

einblenden:

Entscheidung

einblenden:

Projektinformation

einblenden:

Quelle 1

einblenden:
ausblenden:
Titel: NeuroImage
Genre der Quelle: Zeitschrift
 Urheber:
Affiliations:
Ort, Verlag, Ausgabe: Orlando, FL : Academic Press
Seiten: - Band / Heft: 251 Artikelnummer: 118994 Start- / Endseite: - Identifikator: ISSN: 1053-8119
CoNE: https://pure.mpg.de/cone/journals/resource/954922650166