Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT
  Robust and long-term cellular protein and enzymatic activity preservation in biomineralized mammalian cells

Guo, J., Amini, S., Lei, Q., Ping, Y., Agola, J. O., Wang, L., et al. (2022). Robust and long-term cellular protein and enzymatic activity preservation in biomineralized mammalian cells. ACS Nano, 16(2), 2164-2175. doi:10.1021/acsnano.1c08103.

Item is

Basisdaten

einblenden: ausblenden:
Genre: Zeitschriftenartikel

Dateien

einblenden: Dateien
ausblenden: Dateien
:
Article.pdf (Verlagsversion), 13MB
 
Datei-Permalink:
-
Name:
Article.pdf
Beschreibung:
-
OA-Status:
Sichtbarkeit:
Eingeschränkt (Max Planck Institute of Colloids and Interfaces, MTKG; )
MIME-Typ / Prüfsumme:
application/pdf
Technische Metadaten:
Copyright Datum:
-
Copyright Info:
-
Lizenz:
-

Externe Referenzen

einblenden:

Urheber

einblenden:
ausblenden:
 Urheber:
Guo, Jimin, Autor
Amini, Shahrouz1, Autor                 
Lei, Qi, Autor
Ping, Yuan, Autor
Agola, Jacob Ongudi, Autor
Wang, Lu, Autor
Zhou, Liang, Autor
Cao, Jiangfan, Autor
Franco, Stefan, Autor
Noureddine, Achraf, Autor
Miserez, Ali, Autor
Zhu, Wei, Autor
Brinker, C. Jeffrey, Autor
Affiliations:
1Shahrouz Amini, Biomaterialien, Max Planck Institute of Colloids and Interfaces, Max Planck Society, ou_3217681              

Inhalt

einblenden:
ausblenden:
Schlagwörter: silicification; mammalian cells; protein accessibility; enzyme bioactivity; long-term preservation
 Zusammenfassung: Preservation of evolved biological structure and function in robust engineering materials is of interest for storage of biological samples before diagnosis and development of vaccines, sensors, and enzymatic reactors and has the potential to avoid cryopreservation and its associated cold-chain issues. Here, we demonstrate that "freezing cells in amorphous silica" is a powerful technique for long-term preservation of whole mammalian cell proteomic structure and function at room temperature. Biomimetic silicification employs the crowded protein microenvironment of mammalian cells as a catalytic framework to proximally transform monomeric silicic acid into silicates forming a nanoscopic silica shell over all biomolecular interfaces. Silicification followed by dehydration preserves and passivates proteomic information within a nanoscale thin silica coating that exhibits size selective permeability (<3.6 nm), preventing protein leaching and protease degradation of cellular contents, while providing access of small molecular constituents for cellular enzymatic reaction. Exposure of dehydrated silicified cells to mild etchant or prolonged hydrolysis removes the silica, completely rerevealing biomolecular components and restoring their accessibility and functionality.

Details

einblenden:
ausblenden:
Sprache(n): eng - English
 Datum: 2022-02-102022
 Publikationsstatus: Erschienen
 Seiten: -
 Ort, Verlag, Ausgabe: -
 Inhaltsverzeichnis: -
 Art der Begutachtung: -
 Identifikatoren: DOI: 10.1021/acsnano.1c08103
BibTex Citekey: doi:10.1021/acsnano.1c08103
Anderer: FDM?
 Art des Abschluß: -

Veranstaltung

einblenden:

Entscheidung

einblenden:

Projektinformation

einblenden:

Quelle 1

einblenden:
ausblenden:
Titel: ACS Nano
  Andere : ACS Nano
Genre der Quelle: Zeitschrift
 Urheber:
Affiliations:
Ort, Verlag, Ausgabe: Washington, DC : American Chemical Society
Seiten: - Band / Heft: 16 (2) Artikelnummer: - Start- / Endseite: 2164 - 2175 Identifikator: ISSN: 1936-0851