English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT
 
 
DownloadE-Mail
  A novel type of geosmin biosynthesis in myxobacteria

Dickschat, J., Bode, H. B., Mahmud, T., Muller, R., & Schulz, S. (2005). A novel type of geosmin biosynthesis in myxobacteria. JOURNAL OF ORGANIC CHEMISTRY, 70(13), 5174-5182. doi:10.1021/jo050449g.

Item is

Files

show Files

Locators

show

Creators

show
hide
 Creators:
Dickschat, JS1, Author
Bode, H. B.2, Author           
Mahmud, T1, Author
Muller, R1, Author
Schulz, S1, Author
Affiliations:
1external, ou_persistent22              
2Universität des Saarlandes, External Organization, ou_persistent22              

Content

show
hide
Free keywords: -
 Abstract: The biosynthesis of geosmin (1) and (1(10)E,5E)-germacradien-11-ol (2), two volatile terpenoid compounds emitted by the myxobacteria Myxococcus xanthus and Stigmatella aurantiaca, was investigated in feeding experiments with different labeled precursors. In these experiments, the volatiles released by the cell cultures grown on agar plates were collected with a closed-loop stripping apparatus (CLSA) and analyzed by GC-MS. [H-2(10)]Leucine and [4,4,4,5,5,5-H-2(6)]dimethylacrylate were fed to wild-type strains and bkd mutant strains, which are impaired in the degradation of leucine to isovaleryl-CoA. [H-2(10)]Leucine was incorporated into 1 and 2 only by the wild-type strains via the biosynthetic pathway that involves leucine degradation and branching into the mevalonate pathway. Dimethylacrylyl-CoA (DMA-CoA) is an intermediate in the leucine degradation and in the recently discovered pathway from HMG-CoA to isovaleryl-CoA. The corresponding free acid, [4,4,4,5,5,5-H-2(6)]dimethylacrylic acid, was incorporated into 1 and 2 only by the mutants impaired in leucine degradation. [4,4,6,6,6-H-2(5)]Mevalonic acid lactone (12) was synthesized and fed to M. xanthus and S. aurantiaca wild-type strains and a double mutant strain of M. xanthus. This strain does not degrade leucine and is impaired in the reduction of 3-hydroxy-3-methylglutaryl-CoA to mevalonic acid. The mass spectral analysis of labeled 1 and 2 obtained in these feeding experiments led to a biosynthetic scheme to 1 with intermediate 2. This pathway differs from that observed in the liverwort Fossombronia pusilla and thus suggests microbial geosmin biosynthesis following a route different from that in liverworts. Our results are supported by a 1,2-hydride shift of the tertiary hydrogen atom at C-4a into the ring opposite to that in F. pusilla.

Details

show
hide
Language(s):
 Dates: 2005
 Publication Status: Issued
 Pages: -
 Publishing info: -
 Table of Contents: -
 Rev. Type: -
 Identifiers: ISI: 000229982900035
DOI: 10.1021/jo050449g
 Degree: -

Event

show

Legal Case

show

Project information

show

Source 1

show
hide
Title: JOURNAL OF ORGANIC CHEMISTRY
Source Genre: Journal
 Creator(s):
Affiliations:
Publ. Info: -
Pages: - Volume / Issue: 70 (13) Sequence Number: - Start / End Page: 5174 - 5182 Identifier: ISSN: 0022-3263