English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT
  Model-free analysis of brain fMRI data by recurrence quantification

Bianciardi, M., Sirabella, P., Hagberg, G., Giuliani, A., Zbilut, J., & Colosimo, A. (2007). Model-free analysis of brain fMRI data by recurrence quantification. NeuroImage, 37(2), 489-503. doi:10.1016/j.neuroimage.2007.05.025.

Item is

Basic

show hide
Genre: Journal Article

Files

show Files

Locators

show
hide
Description:
-
OA-Status:

Creators

show
hide
 Creators:
Bianciardi, M, Author
Sirabella, P, Author
Hagberg, GE1, Author           
Giuliani, A, Author
Zbilut, JP, Author
Colosimo, A, Author
Affiliations:
1External Organizations, ou_persistent22              

Content

show
hide
Free keywords: -
 Abstract: We propose a novel model-free univariate strategy for functional magnetic resonance imaging (fMRI) studies based upon recurrence quantification analysis (RQA). RQA is an auto-regressive method, which identifies recurrences in signals without any a priori assumptions. The performance of RQA is compared to that of univariate statistics based on a general linear model (GLM) and probabilistic independent component analysis (P-ICA) for a set of simulated and real fMRI data. RQA provides an appealing alternative to conventional GLM techniques, due to its exclusive feature of being model-free and of detecting potentially both linear and nonlinear dynamic processes, without requiring signal stationarity. The overall performance of the method compares positively also with P-ICA, another well-known model-free algorithm, which requires prior information to discriminate between different spatio-temporal processes. For simulated data, RQA is endowed with excellent accuracy for contrast-to-noise ratios greater than 0.2, and has a performance comparable to that of GLM for tCNR ≥ 0.8. For cerebral fMRI data acquired from a group of healthy subjects performing a finger-tapping task, (i) RQA reveals activations in the primary motor area contra-lateral to the employed hand and in the supplementary motor area, in agreement with the outcome of GLM analysis and (ii) identifies an additional brain region with transient signal changes. Moreover, RQA identifies signal recurrences induced by physiological processes other than BOLD (movement-related or of vascular origin). Finally, RQA is more robust than the GLM with respect to variations in the shape and timing of the underlying neuronal and hemodynamic responses which may vary between brain regions, subjects and tasks.

Details

show
hide
Language(s):
 Dates: 2007-08
 Publication Status: Published in print
 Pages: -
 Publishing info: -
 Table of Contents: -
 Rev. Type: -
 Identifiers: DOI: 10.1016/j.neuroimage.2007.05.025
 Degree: -

Event

show

Legal Case

show

Project information

show

Source 1

show
hide
Title: NeuroImage
Source Genre: Journal
 Creator(s):
Affiliations:
Publ. Info: Orlando, FL : Academic Press
Pages: - Volume / Issue: 37 (2) Sequence Number: - Start / End Page: 489 - 503 Identifier: ISSN: 1053-8119
CoNE: https://pure.mpg.de/cone/journals/resource/954922650166