Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT
  Quantitative theory for the diffusive dynamics of liquid condensates.

Hubatsch, L., Jawerth, L., Love, C., Bauermann, J., Tang, T. D., Bo, S., et al. (2021). Quantitative theory for the diffusive dynamics of liquid condensates. eLife, 10: e68620. doi:10.7554/eLife.68620.

Item is

Basisdaten

einblenden: ausblenden:
Genre: Zeitschriftenartikel

Externe Referenzen

einblenden:

Urheber

einblenden:
ausblenden:
 Urheber:
Hubatsch, Lars1, Autor           
Jawerth, Louise 1, Autor           
Love, Celina1, Autor           
Bauermann, Jonathan, Autor
Tang, Ty Dora, Autor
Bo, Stefano, Autor
Hyman, Anthony1, Autor           
Weber, Christoph A., Autor
Affiliations:
1Max Planck Institute for Molecular Cell Biology and Genetics, Max Planck Society, ou_2340692              

Inhalt

einblenden:
ausblenden:
Schlagwörter: -
 Zusammenfassung: Key processes of biological condensates are diffusion and material exchange with their environment. Experimentally, diffusive dynamics are typically probed via fluorescent labels. However, to date, a physics-based, quantitative framework for the dynamics of labeled condensate components is lacking. Here we derive the corresponding dynamic equations, building on the physics of phase separation, and quantitatively validate the related framework via experiments. We show that by using our framework we can precisely determine diffusion coefficients inside liquid condensates via a spatio-temporal analysis of fluorescence recovery after photobleaching (FRAP) experiments. We showcase the accuracy and precision of our approach by considering space- and time-resolved data of protein condensates and two different polyelectrolyte-coacervate systems. Interestingly, our theory can also be used to determine a relationship between the diffusion coefficient in the dilute phase and the partition coefficient, without relying on fluorescence measurements in the dilute phase. This enables us to investigate the effect of salt addition on partitioning and bypasses recently described quenching artifacts in the dense phase. Our approach opens new avenues for theoretically describing molecule dynamics in condensates, measuring concentrations based on the dynamics of fluorescence intensities, and quantifying rates of biochemical reactions in liquid condensates.

Details

einblenden:
ausblenden:
Sprache(n):
 Datum: 2021-10-12
 Publikationsstatus: Erschienen
 Seiten: -
 Ort, Verlag, Ausgabe: -
 Inhaltsverzeichnis: -
 Art der Begutachtung: -
 Identifikatoren: DOI: 10.7554/eLife.68620
Anderer: cbg-8198
PMID: 34636323
 Art des Abschluß: -

Veranstaltung

einblenden:

Entscheidung

einblenden:

Projektinformation

einblenden:

Quelle 1

einblenden:
ausblenden:
Titel: eLife
  Andere : Elife
Genre der Quelle: Zeitschrift
 Urheber:
Affiliations:
Ort, Verlag, Ausgabe: -
Seiten: - Band / Heft: 10 Artikelnummer: e68620 Start- / Endseite: - Identifikator: -