Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT
  Ultrafast carrier dynamics in terahertz photoconductors and photomixers: beyond short-carrier-lifetime semiconductors

Lu, P.-K., de Olvera, A. J. F., Turan, D., Seifert, T. S., Yardimci, N. T., Kampfrath, T., et al. (2022). Ultrafast carrier dynamics in terahertz photoconductors and photomixers: beyond short-carrier-lifetime semiconductors. Nanophotonics, 11(11), 2661-2691. doi:10.1515/nanoph-2021-0785.

Item is

Basisdaten

einblenden: ausblenden:
Genre: Zeitschriftenartikel

Dateien

einblenden: Dateien
ausblenden: Dateien
:
10.1515_nanoph-2021-0785.pdf (Verlagsversion), 5MB
Name:
10.1515_nanoph-2021-0785.pdf
Beschreibung:
-
OA-Status:
Gold
Sichtbarkeit:
Öffentlich
MIME-Typ / Prüfsumme:
application/pdf / [MD5]
Technische Metadaten:
Copyright Datum:
2022
Copyright Info:
The Author(s)

Externe Referenzen

einblenden:

Urheber

einblenden:
ausblenden:
 Urheber:
Lu, Ping-Keng1, Autor
de Olvera, Anuar Jesus Fernandez2, Autor
Turan, Deniz1, Autor
Seifert, Tom Sebastian3, Autor
Yardimci, Nezih Tolga1, Autor
Kampfrath, Tobias4, Autor           
Preu, Sascha2, Autor
Jarrahi, Mona1, Autor
Affiliations:
1Electrical and Computer Engineering Department, University of California, Los Angeles, CA, USA, ou_persistent22              
2Department of Electrical Engineering and Information Technology, Technical University Darmstadt, Darmstadt, Germany, ou_persistent22              
3Department of Physics, Freie Universität Berlin, 14195 Berlin, Germany, ou_persistent22              
4Physical Chemistry, Fritz Haber Institute, Max Planck Society, ou_634546              

Inhalt

einblenden:
ausblenden:
Schlagwörter: -
 Zusammenfassung: Efficient terahertz generation and detection are a key prerequisite for high performance terahertz systems. Major advancements in realizing efficient terahertz emitters and detectors were enabled through photonics-driven semiconductor devices, thanks to the extremely wide bandwidth available at optical frequencies. Through the efficient generation and ultrafast transport of charge carriers within a photo-absorbing semiconductor material, terahertz frequency components are created from the mixing products of the optical frequency components that drive the terahertz device – a process usually referred to as photomixing. The created terahertz frequency components, which are in the physical form of oscillating carrier concentrations, can feed a terahertz antenna and get radiated in case of a terahertz emitter, or mix with an incoming terahertz wave to down-convert to DC or to a low frequency photocurrent in case of a terahertz detector. Realizing terahertz photoconductors typically relies on short-carrier-lifetime semiconductors as the photo-absorbing material, where photocarriers are quickly trapped within one picosecond or less after generation, leading to ultrafast carrier dynamics that facilitates high-frequency device operation. However, while enabling broadband operation, a sub-picosecond lifetime of the photocarriers results in a substantial loss of photoconductive gain and optical responsivity. In addition, growth of short-carrier-lifetime semiconductors in many cases relies on the use of rare elements and non-standard processes with limited accessibility. Therefore, there is a strong motivation to explore and develop alternative techniques for realizing terahertz photomixers that do not rely on these defect-introduced short-carrier-lifetime semiconductors. This review will provide an overview of several promising approaches to realize terahertz emitters and detectors without short-carrier-lifetime semiconductors. These novel approaches utilize p-i-n diode junctions, plasmonic nanostructures, ultrafast spintronics, and low-dimensional materials to offer ultrafast carrier response. These innovative directions have great potentials for extending the applicability and accessibility of the terahertz spectrum for a wide range of applications.

Details

einblenden:
ausblenden:
Sprache(n): eng - English
 Datum: 2021-12-162022-02-162022-03-102022-05-17
 Publikationsstatus: Erschienen
 Seiten: 31
 Ort, Verlag, Ausgabe: -
 Inhaltsverzeichnis: -
 Art der Begutachtung: Expertenbegutachtung
 Identifikatoren: DOI: 10.1515/nanoph-2021-0785
 Art des Abschluß: -

Veranstaltung

einblenden:

Entscheidung

einblenden:

Projektinformation

einblenden: ausblenden:
Projektname : TERAMAG - Ultrafast spin transport and magnetic order controlled by terahertz electromagnetic pulses
Grant ID : 681917
Förderprogramm : Horizon 2020 (H2020)
Förderorganisation : European Commission (EC)

Quelle 1

einblenden:
ausblenden:
Titel: Nanophotonics
Genre der Quelle: Zeitschrift
 Urheber:
Affiliations:
Ort, Verlag, Ausgabe: Berlin, Germany : de Gruyter
Seiten: 31 Band / Heft: 11 (11) Artikelnummer: - Start- / Endseite: 2661 - 2691 Identifikator: ISSN: 2192-8614
CoNE: https://pure.mpg.de/cone/journals/resource/2192-8614