English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT
  Phosphoproteome analysis of cells infected with adapted and nonadapted influenza A virus reveals novel pro- and antiviral signaling networks

Weber, A., Dam, S., Saul, V. V., Kuznetsova, I., Müller, C., Fritz-Wolf, K., et al. (2019). Phosphoproteome analysis of cells infected with adapted and nonadapted influenza A virus reveals novel pro- and antiviral signaling networks. Journal of Virology, 93(13): e00528-19, pp. 1-29. doi:10.1128/JVI.00528-19.

Item is

Files

show Files
hide Files
:
JVirol_94_2020_e00528-19.pdf (Any fulltext), 12MB
 
File Permalink:
-
Name:
JVirol_94_2020_e00528-19.pdf
Description:
-
OA-Status:
Visibility:
Restricted (Max Planck Institute for Medical Research, MHMF; )
MIME-Type / Checksum:
application/pdf
Technical Metadata:
Copyright Date:
-
Copyright Info:
-
License:
-

Locators

show
hide
Description:
-
OA-Status:
Description:
-
OA-Status:

Creators

show
hide
 Creators:
Weber, Axel, Author
Dam, Sharmistha, Author
Saul, Vera V., Author
Kuznetsova, Irina, Author
Müller, Christin, Author
Fritz-Wolf, Karin1, Author           
Becker, Katja, Author
Linne, Uwe, Author
Gu, Hongbo, Author
Stokes, Matthew P., Author
Pleschka, Stephan, Author
Kracht, Michael, Author
Schmitz, M. Lienhard, Author
Affiliations:
1Department of Biomolecular Mechanisms, Max Planck Institute for Medical Research, Max Planck Society, ou_1497700              

Content

show
hide
Free keywords: influenza; kinase; phosphoproteome; signaling network
 Abstract: Influenza A viruses (IAVs) quickly adapt to new environments and are well known to cross species barriers. To reveal a molecular basis for these phenomena, we compared the Ser/Thr and Tyr phosphoproteomes of murine lung epithelial cells early and late after infection with mouse-adapted SC35M virus or its nonadapted SC35 counterpart. With this analysis we identified a large set of upregulated Ser/Thr phosphorylations common to both viral genotypes, while Tyr phosphorylations showed little overlap. Most of the proteins undergoing massive changes of phosphorylation in response to both viruses regulate chromatin structure, RNA metabolism, and cell adhesion, including a focal adhesion kinase (FAK)-regulated network mediating the regulation of actin dynamics. IAV also affected phosphorylation of activation loops of 37 protein kinases, including FAK and several phosphatases, many of which were not previously implicated in influenza virus infection. Inhibition of FAK proved its contribution to IAV infection. Novel phosphorylation sites were found on IAV-encoded proteins, and the functional analysis of selected phosphorylation sites showed that they either support (NA Ser178) or inhibit (PB1 Thr223) virus propagation. Together, these data allow novel insights into IAV-triggered regulatory phosphorylation circuits and signaling networks.IMPORTANCE Infection with IAVs leads to the induction of complex signaling cascades, which apparently serve two opposing functions. On the one hand, the virus highjacks cellular signaling cascades in order to support its propagation; on the other hand, the host cell triggers antiviral signaling networks. Here we focused on IAV-triggered phosphorylation events in a systematic fashion by deep sequencing of the phosphoproteomes. This study revealed a plethora of newly phosphorylated proteins. We also identified 37 protein kinases and a range of phosphatases that are activated or inactivated following IAV infection. Moreover, we identified new phosphorylation sites on IAV-encoded proteins. Some of these phosphorylations support the enzymatic function of viral components, while other phosphorylations are inhibitory, as exemplified by PB1 Thr223 modification. Our global characterization of IAV-triggered patterns of phospho-proteins provides a rich resource to further understand host responses to infection at the level of phosphorylation-dependent signaling networks.

Details

show
hide
Language(s): eng - English
 Dates: 2019-04-022019-04-052019-06-172019-06-14
 Publication Status: Issued
 Pages: 29
 Publishing info: -
 Table of Contents: -
 Rev. Type: Peer
 Degree: -

Event

show

Legal Case

show

Project information

show

Source 1

show
hide
Title: Journal of Virology
Source Genre: Journal
 Creator(s):
Affiliations:
Publ. Info: American Society for Microbiology (ASM)
Pages: - Volume / Issue: 93 (13) Sequence Number: e00528-19 Start / End Page: 1 - 29 Identifier: ISSN: 0022-538X
CoNE: https://pure.mpg.de/cone/journals/resource/954925419045