Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT
  Locality optimization for parent Hamiltonians of Tensor Networks.

Giudici, G., Cirac, J. I., & Schuch, N. (2022). Locality optimization for parent Hamiltonians of Tensor Networks. Physical Review B, 106: 035109. doi:10.1103/PhysRevB.106.035109.

Item is

Basisdaten

ausblenden:
Genre: Zeitschriftenartikel

Dateien

ausblenden: Dateien
:
2203.07443.pdf (Preprint), 3MB
 
Datei-Permalink:
-
Name:
2203.07443.pdf
Beschreibung:
-
OA-Status:
Sichtbarkeit:
Privat
MIME-Typ / Prüfsumme:
application/pdf
Technische Metadaten:
Copyright Datum:
-
Copyright Info:
-
Lizenz:
-
:
6322.pdf (Verlagsversion), 2MB
 
Datei-Permalink:
-
Name:
6322.pdf
Beschreibung:
-
OA-Status:
Sichtbarkeit:
Eingeschränkt ( Max Planck Society (every institute); )
MIME-Typ / Prüfsumme:
application/pdf
Technische Metadaten:
Copyright Datum:
-
Copyright Info:
-
Lizenz:
-

Externe Referenzen

einblenden:

Urheber

ausblenden:
 Urheber:
Giudici, Giuliano1, Autor
Cirac, J. Ignacio1, 2, Autor           
Schuch, Norbert1, 2, Autor           
Affiliations:
1MCQST - Munich Center for Quantum Science and Technology, External Organizations, ou_3330166              
2Theory, Max Planck Institute of Quantum Optics, Max Planck Society, ou_1445571              

Inhalt

ausblenden:
Schlagwörter: Quantum Physics, quant-ph
 Zusammenfassung: Tensor Network states form a powerful framework for both the analytical and numerical study of strongly correlated phases. Vital to their analytical utility is that they appear as the exact ground states of associated parent Hamiltonians, where canonical proof techniques guarantee a controlled ground space structure. Yet, while those Hamiltonians are local by construction, the known techniques often yield complex Hamiltonians which act on a rather large number of spins. In this paper, we present an algorithm to systematically simplify parent Hamiltonians, breaking them down into any given basis of elementary interaction terms. The underlying optimization problem is a semidefinite program, and thus the optimal solution can be found efficiently. Our method exploits a degree of freedom in the construction of parent Hamiltonians -- the excitation spectrum of the local terms -- over which it optimizes such as to obtain the best possible approximation. We benchmark our method on the AKLT model and the Toric Code model, where we show that the canonical parent Hamiltonians (acting on 3 or 4 and 12 sites, respectively) can be broken down to the known optimal 2-body and 4-body terms. We then apply our method to the paradigmatic Resonating Valence Bond (RVB) model on the kagome lattice. Here, the simplest previously known parent Hamiltonian acts on all the 12 spins on one kagome star. With our optimization algorithm, we obtain a vastly simpler Hamiltonian: We find that the RVB model is the exact ground state of a parent Hamiltonian whose terms are all products of at most four Heisenberg interactions, and whose range can be further constrained, providing a major improvement over the previously known 12-body Hamiltonian.

Details

ausblenden:
Sprache(n): eng - English
 Datum: 2022-03-142022-06-132022-07-072022-07-15
 Publikationsstatus: Erschienen
 Seiten: -
 Ort, Verlag, Ausgabe: -
 Inhaltsverzeichnis: -
 Art der Begutachtung: Expertenbegutachtung
 Identifikatoren: arXiv: 2203.07443v1
DOI: 10.1103/PhysRevB.106.035109
Anderer: 6322
 Art des Abschluß: -

Veranstaltung

einblenden:

Entscheidung

einblenden:

Projektinformation

ausblenden:
Projektname : ERC-CoG SEQUAM, ERC-CoG QSIM-CORR
Grant ID : 63476, 71891
Förderprogramm : European Union’s Horizon 2020 research and innovation programme
Förderorganisation : European Research Council (ERC)
Projektname : -
Grant ID : -
Förderprogramm : Germany’s Excellence Strategy (EXC-2111 – 390814868)
Förderorganisation : Deutsche Forschungsgemeinschaft (DFG, German Research Foundation)

Quelle 1

ausblenden:
Titel: Physical Review B
  Kurztitel : Phys. Rev. B
Genre der Quelle: Zeitschrift
 Urheber:
Affiliations:
Ort, Verlag, Ausgabe: Woodbury, NY : American Physical Society
Seiten: - Band / Heft: 106 Artikelnummer: 035109 Start- / Endseite: - Identifikator: ISSN: 1098-0121
CoNE: https://pure.mpg.de/cone/journals/resource/954925225008