hide
Free keywords:
-
Abstract:
We present an exact Monte Carlo method to simulate the nonequilibrium dynamics of electron-phonon models in the adiabatic limit of zero phonon frequency. The classical nature of the phonons allows us to sample the equilibrium phonon distribution and efficiently evolve the electronic subsystem in a time-dependent electromagnetic field for each phonon configuration. We demonstrate that our approach is particularly useful for charge-density-wave systems experiencing pulsed electric fields, as they appear in pump-probe experiments. For the half-filled Holstein model in one and two dimensions, we calculate the out-of-equilibrium response of the current and the energy after a pulse is applied as well as the photoemission spectrum before and after the pump. Finite-size effects are under control for chains of 162 sites (in one dimension) or 16 x 16 square lattices (in two