English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT
  Long-wave infrared super-resolution wide-field microscopy using sum-frequency generation

Niemann, R., Waßerroth, S., Lu, G., Gewinner, S., De Pas, M., Schöllkopf, W., et al. (2022). Long-wave infrared super-resolution wide-field microscopy using sum-frequency generation. Applied Physics Letters, 120(13): 131102. doi:10.1063/5.0081817.

Item is

Basic

show hide
Genre: Journal Article

Files

show Files
hide Files
:
5.0081817.pdf (Publisher version), 2MB
Name:
5.0081817.pdf
Description:
-
Visibility:
Public
MIME-Type / Checksum:
application/pdf / [MD5]
Technical Metadata:
Copyright Date:
2022
Copyright Info:
The Author(s)

Locators

show

Creators

show
hide
 Creators:
Niemann, Richarda1, Author              
Waßerroth, Sören1, Author              
Lu, Guanyu2, Author
Gewinner, Sandy3, Author              
De Pas, Marco3, Author              
Schöllkopf, Wieland3, Author              
Caldwell, Joshua D.2, Author
Wolf, Martin1, Author              
Paarmann, Alexander1, Author              
Affiliations:
1Physical Chemistry, Fritz Haber Institute, Max Planck Society, ou_634546              
2Vanderbilt University, Nashville, Tennessee 37235, USA, ou_persistent22              
3Molecular Physics, Fritz Haber Institute, Max Planck Society, ou_634545              

Content

show
hide
Free keywords: -
 Abstract: Super-resolution microscopy in the visible is an established powerful tool in various disciplines. In the long-wave infrared (LWIR) spectral range, however, no comparable schemes have been demonstrated to date. In this work, we experimentally demonstrate super-resolution microscopy in the LWIR range (λIR ≈ 10–12 μm) using IR-visible sum-frequency generation. We operate our microscope in a wide-field scheme and image localized surface phonon polaritons in 4H-SiC nanostructures as a proof-of-concept. With this technique, we demonstrate an enhanced spatial resolution of ~λIR/9, enabling to resolve the polariton resonances in individual sub-diffractional nanostructures with sub-wavelength spacing. Furthermore, we show that this resolution allows us to differentiate between spatial patterns associated with different polariton modes within individual nanostructures.

Details

show
hide
Language(s): eng - English
 Dates: 2021-12-102022-03-172022-03-292022-03
 Publication Status: Published in print
 Pages: 5
 Publishing info: -
 Table of Contents: -
 Rev. Type: Peer
 Identifiers: DOI: 10.1063/5.0081817
 Degree: -

Event

show

Legal Case

show

Project information

show

Source 1

show
hide
Title: Applied Physics Letters
  Abbreviation : Appl. Phys. Lett.
Source Genre: Journal
 Creator(s):
Affiliations:
Publ. Info: Melville, NY : American Institute of Physics
Pages: 5 Volume / Issue: 120 (13) Sequence Number: 131102 Start / End Page: - Identifier: ISSN: 0003-6951
CoNE: https://pure.mpg.de/cone/journals/resource/954922836223