English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT
  Multiple heat transport maxima in confined-rotating Rayleigh–Bénard convection

Hartmann, R., Verzicco, R., Klein Kranenbarg, L., Lohse, D., & Stevens, R. J. (2022). Multiple heat transport maxima in confined-rotating Rayleigh–Bénard convection. Journal of Fluid Mechanics, 939: A1. doi:10.1017/jfm.2021.1031.

Item is

Files

show Files

Locators

show

Creators

show
hide
 Creators:
Hartmann, Robert, Author
Verzicco, Roberto, Author
Klein Kranenbarg, Liesbeth, Author
Lohse, Detlef1, Author           
Stevens, Richard J.A.M., Author
Affiliations:
1Max Planck Institute for Dynamics and Self-Organization, Max Planck Society, ou_2063285              

Content

show
hide
Free keywords: -
 Abstract: Moderate rotation and moderate horizontal confinement similarly enhance the heat transport in Rayleigh–Bénard convection (RBC). Here, we systematically investigate how these two types of flow stabilization together affect the heat transport. We conduct direct numerical simulations of confined-rotating RBC in a cylindrical set-up at Prandtl number Pr=4.38 , and various Rayleigh numbers 2×108⩽Ra⩽7×109 . Within the parameter space of rotation (given as inverse Rossby number 0⩽Ro−1⩽40 ) and confinement (given as height-to-diameter aspect ratio 2⩽Γ−1⩽32 ), we observe three heat transport maxima. At lower Ra , the combination of rotation and confinement can achieve larger heat transport than either rotation or confinement individually, whereas at higher Ra , confinement alone is most effective in enhancing the heat transport. Further, we identify two effects enhancing the heat transport: (i) the ratio of kinetic and thermal boundary layer thicknesses controlling the efficiency of Ekman pumping, and (ii) the formation of a stable domain-spanning flow for an efficient vertical transport of the heat through the bulk. Their interfering efficiencies generate the multiple heat transport maxima.

Details

show
hide
Language(s): eng - English
 Dates: 2022-03-242022
 Publication Status: Issued
 Pages: -
 Publishing info: -
 Table of Contents: -
 Rev. Type: -
 Identifiers: DOI: 10.1017/jfm.2021.1031
 Degree: -

Event

show

Legal Case

show

Project information

show

Source 1

show
hide
Title: Journal of Fluid Mechanics
Source Genre: Journal
 Creator(s):
Affiliations:
Publ. Info: -
Pages: 27 Volume / Issue: 939 Sequence Number: A1 Start / End Page: - Identifier: ISSN: 0022-1120
ISSN: 1469-7645