English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT
  Mechanism of spindle pole organization and instability in human oocytes

So, C., Menelaou, K., Uraji, J., Harasimov, K., Steyer, A. M., Seres, K. B., et al. (2022). Mechanism of spindle pole organization and instability in human oocytes. Science, 375(6581): eabj3944. doi:10.1126/science.abj3944.

Item is

Basic

show hide
Genre: Journal Article

Files

show Files
hide Files
:
3375936.pdf (Publisher version), 6MB
 
File Permalink:
-
Name:
3375936.pdf
Description:
-
OA-Status:
Visibility:
Restricted ( Max Planck Society (every institute); )
MIME-Type / Checksum:
application/pdf
Technical Metadata:
Copyright Date:
-
Copyright Info:
-
License:
-

Locators

show

Creators

show
hide
 Creators:
So, C.1, Author           
Menelaou, K.1, Author           
Uraji, J.1, Author           
Harasimov, K.1, Author           
Steyer, A. M.2, Author           
Seres, K. B., Author
Bucevičius, J.3, Author
Lukinavicius, G.3, Author
Möbius, W.2, Author           
Sibold, C., Author
Tandler-Schneider, A., Author
Eckel, H., Author
Moltrecht, R., Author
Blayney, M., Author
Elder, K., Author
Schuh, M.1, Author           
Affiliations:
1Department of Meiosis, Max Planck Institute for Multidisciplinary Sciences, Max Planck Society, ou_3350271              
2Department of Neurogenetics, Max Planck Institute for Multidisciplinary Sciences, Max Planck Society, ou_3350301              
3Laboratory of Chromatin Labeling and Imaging, Max Planck Institute for Multidisciplinary Sciences, Max Planck Society, ou_persistent22              

Content

show
hide
Free keywords: -
 Abstract: Human oocytes are prone to assembling meiotic spindles with unstable poles, which can favor aneuploidy in human eggs. The underlying causes of spindle instability are unknown. We found that NUMA (nuclear mitotic apparatus protein)–mediated clustering of microtubule minus ends focused the spindle poles in human, bovine, and porcine oocytes and in mouse oocytes depleted of acentriolar microtubule-organizing centers (aMTOCs). However, unlike human oocytes, bovine, porcine, and aMTOC-free mouse oocytes have stable spindles. We identified the molecular motor KIFC1 (kinesin superfamily protein C1) as a spindle-stabilizing protein that is deficient in human oocytes. Depletion of KIFC1 recapitulated spindle instability in bovine and aMTOC-free mouse oocytes, and the introduction of exogenous KIFC1 rescued spindle instability in human oocytes. Thus, the deficiency of KIFC1 contributes to spindle instability in human oocytes.

Details

show
hide
Language(s): eng - English
 Dates: 2022-022022-02-11
 Publication Status: Published in print
 Pages: -
 Publishing info: -
 Table of Contents: -
 Rev. Type: Peer
 Identifiers: DOI: 10.1126/science.abj3944
 Degree: -

Event

show

Legal Case

show

Project information

show

Source 1

show
hide
Title: Science
Source Genre: Journal
 Creator(s):
Affiliations:
Publ. Info: -
Pages: 19 Volume / Issue: 375 (6581) Sequence Number: eabj3944 Start / End Page: - Identifier: -