English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT
  Detailed models of interacting short-period massive binary stars

Sen, K., Langer, N., Marchant, P., Menon, A., de Mink, S. E., Schootemeijer, A., et al. (2022). Detailed models of interacting short-period massive binary stars. Astronomy and Astrophysics, 659: A98. doi:10.1051/0004-6361/202142574.

Item is

Basic

show hide
Genre: Journal Article

Files

show Files
hide Files
:
Detailed models of interacting short-period massive binary stars.pdf (Any fulltext), 6MB
 
File Permalink:
-
Name:
Detailed models of interacting short-period massive binary stars.pdf
Description:
-
Visibility:
Private
MIME-Type / Checksum:
application/pdf
Technical Metadata:
Copyright Date:
-
Copyright Info:
-
License:
-

Locators

show

Creators

show
hide
 Creators:
Sen, K., Author
Langer, N., Author
Marchant, P., Author
Menon, A., Author
de Mink, S. E.1, Author              
Schootemeijer, A., Author
Schürmann, C., Author
Mahy, L., Author
Hastings, B., Author
Nathaniel, K., Author
Sana, H., Author
Wang, C., Author
Xu, X. T., Author
Affiliations:
1MPI for Astrophysics, Max Planck Society, ou_159875              

Content

show
hide
Free keywords: -
 Abstract: Context. The majority of massive stars are part of binary systems. In about a quarter of these, the companions are so close that mass transfer occurs while they undergo core hydrogen burning, first on the thermal and then on the nuclear timescale. The nuclear timescale mass transfer leads to observational counterparts: the semi-detached so-called massive Algol binaries. These systems may provide urgently needed tests of the physics of mass transfer. However, comprehensive model predictions for these systems are sparse. Aims. We use a large grid of detailed evolutionary models of short-period massive binaries and follow-up population synthesis calculations to derive probability distributions of the observable properties of massive Algols and their descendants. Methods. Our results are based on ∼10 000 binary model sequences calculated with the stellar evolution code MESA, using a metallicity suitable for the Large Magellanic Cloud (LMC), covering initial donor masses between 10 M⁠ and 40 M⁠ and initial orbital periods above 1.4 d. These models include internal differential rotation and magnetic angular momentum transport, non-conservative mass and angular momentum transfer between the binary components, and time-dependent tidal coupling. Results. Our models imply ∼30, or ∼3% of the ∼1000, core hydrogen burning O-star binaries in the LMC to be currently in the semi-detached phase. Our donor models are up to 25 times more luminous than single stars of an identical mass and effective temperature, which agrees with the observed Algols. A comparison of our models with the observed orbital periods and mass ratios implies rather conservative mass transfer in some systems, while a very inefficient one in others. This is generally well reproduced by our spin-dependent mass transfer algorithm, except for the lowest considered masses. The observations reflect the slow increase of the surface nitrogen enrichment of the donors during the semi-detached phase all the way to CNO equilibrium. We also investigate the properties of our models after core hydrogen depletion of the donor star, when these models correspond to Wolf-Rayet or helium+OB star binaries. Conclusions. A dedicated spectroscopic survey of massive Algol systems may allow to derive the dependence of the efficiency of thermal timescale mass transfer on the binary parameters, as well as the efficiency of semiconvective mixing in the stellar interior. This would be a crucial step towards reliable binary models up to the formation of supernovae and compact objects.

Details

show
hide
Language(s): eng - English
 Dates: 2022-03-11
 Publication Status: Published online
 Pages: -
 Publishing info: -
 Table of Contents: -
 Rev. Type: -
 Identifiers: DOI: 10.1051/0004-6361/202142574
 Degree: -

Event

show

Legal Case

show

Project information

show

Source 1

show
hide
Title: Astronomy and Astrophysics
  Other : Astron. Astrophys.
Source Genre: Journal
 Creator(s):
Affiliations:
Publ. Info: France : EDP Sciences S A
Pages: - Volume / Issue: 659 Sequence Number: A98 Start / End Page: - Identifier: ISSN: 1432-0746
CoNE: https://pure.mpg.de/cone/journals/resource/954922828219_1