English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT
  Mineralization generates megapascal contractile stresses in collagen fibrils

Ping, H., Wagermaier, W., Horbelt, N., Scoppola, E., Li, C., Werner, P. E., et al. (2022). Mineralization generates megapascal contractile stresses in collagen fibrils. Science, 376(6589), 188-192. doi:10.1126/science.abm2664.

Item is

Files

hide Files
:
Article.pdf (Publisher version), 867KB
 
File Permalink:
-
Name:
Article.pdf
Description:
-
OA-Status:
Visibility:
Restricted (Max Planck Institute of Colloids and Interfaces, MTKG; )
MIME-Type / Checksum:
application/pdf
Technical Metadata:
Copyright Date:
-
Copyright Info:
-
License:
-

Locators

hide
Locator:
primary data (Research data)
Description:
-
OA-Status:
Not specified
Locator:
Manuscript (Publisher version)
Description:
-
OA-Status:
Not specified

Creators

hide
 Creators:
Ping, Hang, Author
Wagermaier, Wolfgang1, Author           
Horbelt, Nils2, Author           
Scoppola, Ernesto1, Author                 
Li, Chenghao, Author
Werner, Peter E.3, Author           
Fu, Zhengyi, Author
Fratzl, Peter3, Author           
Affiliations:
1Wolfgang Wagermaier, Biomaterialien, Max Planck Institute of Colloids and Interfaces, Max Planck Society, ou_1863296              
2Michaela Eder, Biomaterialien, Max Planck Institute of Colloids and Interfaces, Max Planck Society, ou_1863293              
3Peter Fratzl, Biomaterialien, Max Planck Institute of Colloids and Interfaces, Max Planck Society, ou_1863294              

Content

hide
Free keywords: -
 Abstract: During bone formation, collagen fibrils mineralize with carbonated hydroxyapatite, leading to a hybrid material with excellent properties. Other minerals are also known to nucleate within collagen in vitro. For a series of strontium- and calcium-based minerals, we observed that their precipitation leads to a contraction of collagen fibrils, reaching stresses as large as several megapascals. The magnitude of the stress depends on the type and amount of mineral. Using in-operando synchrotron x-ray scattering, we analyzed the kinetics of mineral deposition. Whereas no contraction occurs when the mineral deposits outside fibrils only, intrafibrillar mineralization generates fibril contraction. This chemomechanical effect occurs with collagen fully immersed in water and generates a mineral-collagen composite with tensile fibers, reminiscent of the principle of reinforced concrete.

Details

hide
Language(s): eng - English
 Dates: 2022-04-072022
 Publication Status: Issued
 Pages: -
 Publishing info: -
 Table of Contents: -
 Rev. Type: -
 Identifiers: DOI: 10.1126/science.abm2664
DOI: 10.17617/3.94
PMID: 0624
 Degree: -

Event

show

Legal Case

show

Project information

show

Source 1

hide
Title: Science
  Abbreviation : Science
Source Genre: Journal
 Creator(s):
Affiliations:
Publ. Info: Washington, D.C. : American Association for the Advancement of Science
Pages: - Volume / Issue: 376 (6589) Sequence Number: - Start / End Page: 188 - 192 Identifier: ISSN: 0036-8075