English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT
EndNote (UTF-8)
 
DownloadE-Mail
  Modern applications of machine learning in quantum sciences

Dawid, A., Arnold, J., Requena, B., Gresch, A., Płodzień, M., Donatella, K., et al. (2022). Modern applications of machine learning in quantum sciences. arXiv 2204.04198.

Item is

Files

hide Files
:
2204.04198.pdf (Preprint), 18MB
Name:
2204.04198.pdf
Description:
File downloaded from arXiv at 2022-04-19 11:44
OA-Status:
Not specified
Visibility:
Public
MIME-Type / Checksum:
application/pdf / [MD5]
Technical Metadata:
Copyright Date:
-
Copyright Info:
-
:
Screenshot 2022-04-19 at 11.48.04.png (Supplementary material), 29KB
Name:
Screenshot 2022-04-19 at 11.48.04.png
Description:
-
OA-Status:
Not specified
Visibility:
Public
MIME-Type / Checksum:
image/png / [MD5]
Technical Metadata:
Copyright Date:
-
Copyright Info:
-
License:
-

Locators

show

Creators

hide
 Creators:
Dawid, Anna1, Author
Arnold, Julian1, Author
Requena, Borja1, Author
Gresch, Alexander1, Author
Płodzień, Marcin1, Author
Donatella, Kaelan1, Author
Nicoli, Kim1, Author
Stornati, Paolo1, Author
Koch, Rouven1, Author
Büttner, Miriam1, Author
Okuła, Robert1, Author
Muñoz-Gil, Gorka1, Author
Vargas-Hernández, Rodrigo A.1, Author
Cervera-Lierta, Alba1, Author
Carrasquilla, Juan1, Author
Dunjko, Vedran1, Author
Gabrié, Marylou1, Author
Huembeli, Patrick1, Author
van Nieuwenburg, Evert1, Author
Vicentini, Filippo1, Author
more..
Affiliations:
1external, ou_persistent22              
2Marquardt Division, Max Planck Institute for the Science of Light, Max Planck Society, ou_2421700              

Content

hide
Free keywords: Quantum Physics, quant-ph, Condensed Matter, Disordered Systems and Neural Networks, cond-mat.dis-nn, Condensed Matter, Mesoscale and Nanoscale Physics, cond-mat.mes-hall
 Abstract: In this book, we provide a comprehensive introduction to the most recent advances in the application of machine learning methods in quantum sciences. We cover the use of deep learning and kernel methods in supervised, unsupervised, and reinforcement learning algorithms for phase classification, representation of many-body quantum states, quantum feedback control, and quantum circuits optimization. Moreover, we introduce and discuss more specialized topics such as differentiable programming, generative models, statistical approach to machine learning, and quantum machine learning.

Details

hide
Language(s): eng - English
 Dates: 2022-04-08
 Publication Status: Published online
 Pages: 268 pages, 87 figures. Comments and feedback are very welcome. Figures and tex files are available at https://github.com/Shmoo137/Lecture-Notes
 Publishing info: -
 Table of Contents: -
 Rev. Type: -
 Identifiers: arXiv: 2204.04198
 Degree: -

Event

show

Legal Case

show

Project information

show

Source 1

hide
Title: arXiv 2204.04198
Source Genre: Commentary
 Creator(s):
Affiliations:
Publ. Info: -
Pages: - Volume / Issue: - Sequence Number: - Start / End Page: - Identifier: -