English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT
  Efficient inference in matrix-variate Gaussian models with iid observation noise

Stegle, O., Lippert, C., Mooij, J., Lawrence, N., & Borgwardt, K. (2012). Efficient inference in matrix-variate Gaussian models with iid observation noise. In J. Shawe-Taylor, R. Zemel, P. Bartlett, F. Pereira, & K. Weinberger (Eds.), Advances in Neural Information Processing Systems 24 (pp. 630-638). Red Hook, NY, USA: Curran.

Item is

Basic

hide
Genre: Conference Paper

Files

show Files

Locators

hide
Description:
-
OA-Status:
Not specified

Creators

hide
 Creators:
Stegle, O1, Author           
Lippert, C1, Author           
Mooij, J, Author           
Lawrence, N, Author
Borgwardt, K1, Author           
Affiliations:
1Department Molecular Biology, Max Planck Institute for Developmental Biology, Max Planck Society, Max-Planck-Ring 5, 72076 Tübingen, DE, ou_3375790              

Content

hide
Free keywords: -
 Abstract: Inference in matrix-variate Gaussian models has major applications for multioutput prediction and joint learning of row and column covariances from matrixvariate data. Here, we discuss an approach for efficient inference in such models that explicitly account for iid observation noise. Computational tractability can be retained by exploiting the Kronecker product between row and column covariance matrices. Using this framework, we show how to generalize the Graphical Lasso in order to learn a sparse inverse covariance between features while accounting for
a low-rank confounding covariance between samples. We show practical utility on applications to biology, where we model covariances with more than 100,000 dimensions.
We find greater accuracy in recovering biological network structures and are able to better reconstruct the confounders.

Details

hide
Language(s):
 Dates: 2012-01
 Publication Status: Issued
 Pages: -
 Publishing info: -
 Table of Contents: -
 Rev. Type: -
 Identifiers: BibTex Citekey: StegleLMLB2012
 Degree: -

Event

hide
Title: Twenty-Fifth Annual Conference on Neural Information Processing Systems (NIPS 2011)
Place of Event: Granada, Spain
Start-/End Date: 2011-12-12 - 2011-12-17

Legal Case

show

Project information

show

Source 1

hide
Title: Advances in Neural Information Processing Systems 24
Source Genre: Proceedings
 Creator(s):
Shawe-Taylor, J, Editor
Zemel, RS, Editor
Bartlett, P, Editor
Pereira, F, Editor
Weinberger, KQ, Editor
Affiliations:
-
Publ. Info: Red Hook, NY, USA : Curran
Pages: - Volume / Issue: - Sequence Number: - Start / End Page: 630 - 638 Identifier: ISBN: 978-1-618-39599-3