Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT
  Methane formation driven by reactive oxygen species across all living organisms

Ernst, L., Steinfeld, B. K., Barayeu, U., Klintzsch, T., Kurth, M., Grimm, D., et al. (2022). Methane formation driven by reactive oxygen species across all living organisms. Nature, 603(7901), 482-487. doi:10.1038/s41586-022-04511-9.

Item is

Basisdaten

einblenden: ausblenden:
Genre: Zeitschriftenartikel

Externe Referenzen

einblenden:
ausblenden:
externe Referenz:
https://doi.org/10.1038/s41586-022-04511-9 (Verlagsversion)
Beschreibung:
-
OA-Status:
Hybrid

Urheber

einblenden:
ausblenden:
 Urheber:
Ernst, Leonard1, Autor           
Steinfeld, Benedikt Konstantin2, Autor           
Barayeu, Uladzimir3, Autor
Klintzsch, Thomas3, Autor
Kurth, Markus3, Autor
Grimm, Dirk3, Autor
Dick, Tobias P.3, Autor
Rebelein, Johannes G.1, Autor                 
Bischofs, Ilka B.2, Autor           
Keppler, Frank3, Autor
Affiliations:
1Emmy Noether research Group Microbial Metalloenzymes, Max Planck Institute for Terrestrial Microbiology, Max Planck Society, ou_3266294              
2Department-Independent Research Group Complex Adaptive Traits, Max Planck Institute for Terrestrial Microbiology, Max Planck Society, ou_3266270              
3external, ou_persistent22              

Inhalt

einblenden:
ausblenden:
Schlagwörter: -
 Zusammenfassung: Methane (CH4), the most abundant hydrocarbon in the atmosphere, originates largely from biogenic sources' linked to an increasing number of organisms occurring in oxic and anoxic environments. Traditionally, biogenic CH4 has been regarded as the final product of anoxic decomposition of organic matter by methanogenic archaea. However, plants(2,3), fungi(4), algae(5) and cyanobacteria(6) can produce CH4 in the presence of oxygen. Although methanogens are known to produce CH4 enzymatically during anaerobic energy metabolism(7), the requirements and pathways for CH4 production by non-methanogenic cells are poorly understood. Here, we demonstrate that CH4 formation by Bacillus subtilis and Escherichia coli is triggered by free iron and reactive oxygen species (ROS), which are generated by metabolic activity and enhanced by oxidative stress. ROS-induced methyl radicals, which are derived from organic compounds containing sulfur- or nitrogen-bonded methyl groups, are key intermediates that ultimately lead to CH4 production. We further show CH4 production by many other model organisms from the Bacteria, Archaea and Eukarya domains, including in several human cell lines. All these organisms respond to inducers of oxidative stress by enhanced CH4 formation. Our results imply that all living cells probably possess a common mechanism of CH4 formation that is based on interactions among ROS, iron and methyl donors, opening new perspectives for understanding biochemical CH4 formation and cycling.

Details

einblenden:
ausblenden:
Sprache(n): eng - English
 Datum: 2022
 Publikationsstatus: Erschienen
 Seiten: -
 Ort, Verlag, Ausgabe: -
 Inhaltsverzeichnis: -
 Art der Begutachtung: Expertenbegutachtung
 Identifikatoren: ISI: 000766431300002
DOI: 10.1038/s41586-022-04511-9
 Art des Abschluß: -

Veranstaltung

einblenden:

Entscheidung

einblenden:

Projektinformation

einblenden:

Quelle 1

einblenden:
ausblenden:
Titel: Nature
  Kurztitel : Nature
Genre der Quelle: Zeitschrift
 Urheber:
Affiliations:
Ort, Verlag, Ausgabe: London : Nature Publishing Group
Seiten: - Band / Heft: 603 (7901) Artikelnummer: - Start- / Endseite: 482 - 487 Identifikator: ISSN: 0028-0836
CoNE: https://pure.mpg.de/cone/journals/resource/954925427238