Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT
  An Arabidopsis Secondary Metabolite Directly Targets Expression of the Bacterial Type III Secretion System to Inhibit Bacterial Virulence

Wang, W., Yang, J., Zhang, J., Liu, Y.-X., Tian, C., Qu, B., et al. (2020). An Arabidopsis Secondary Metabolite Directly Targets Expression of the Bacterial Type III Secretion System to Inhibit Bacterial Virulence. Cell Host & Microbe, 27(4), 601-613. doi:10.1016/j.chom.2020.03.004.

Item is

Basisdaten

einblenden: ausblenden:
Genre: Zeitschriftenartikel

Externe Referenzen

einblenden:

Urheber

einblenden:
ausblenden:
 Urheber:
Wang, W, Autor
Yang, J, Autor
Zhang, J, Autor
Liu, Y-X, Autor
Tian, C, Autor
Qu, B, Autor
Gao, C, Autor
Xin, P, Autor
Sheng, S, Autor
Zhang, W, Autor
Miao, P, Autor
Lei, L1, Autor           
Zhang, X, Autor
Chu, J, Autor
Zuo, J, Autor
Li, J, Autor
Bai, Y, Autor
Lei, X, Autor
Zhou, J-M, Autor
Affiliations:
1Department Molecular Biology, Max Planck Institute for Developmental Biology, Max Planck Society, ou_3375790              

Inhalt

einblenden:
ausblenden:
Schlagwörter: -
 Zusammenfassung: Plants deploy a variety of secondary metabolites to fend off pathogen attack. Although defense compounds are generally considered toxic to microbes, the exact mechanisms are often unknown. Here, we show that the Arabidopsis defense compound sulforaphane (SFN) functions primarily by inhibiting Pseudomonas syringae type III secretion system (TTSS) genes, which are essential for pathogenesis. Plants lacking the aliphatic glucosinolate pathway, which do not accumulate SFN, were unable to attenuate TTSS gene expression and exhibited increased susceptibility to P. syringae strains that cannot detoxify SFN. Chemoproteomics analyses showed that SFN covalently modified the cysteine at position 209 of HrpS, a key transcription factor controlling TTSS gene expression. Site-directed mutagenesis and functional analyses further confirmed that Cys209 was responsible for bacterial sensitivity to SFN in vitro and sensitivity to plant defenses conferred by the aliphatic glucosinolate pathway. Collectively, these results illustrate a previously unknown mechanism by which plants disarm a pathogenic bacterium.

Details

einblenden:
ausblenden:
Sprache(n):
 Datum: 2020-04
 Publikationsstatus: Erschienen
 Seiten: -
 Ort, Verlag, Ausgabe: -
 Inhaltsverzeichnis: -
 Art der Begutachtung: -
 Identifikatoren: DOI: 10.1016/j.chom.2020.03.004
PMID: 32272078
 Art des Abschluß: -

Veranstaltung

einblenden:

Entscheidung

einblenden:

Projektinformation

einblenden:

Quelle 1

einblenden:
ausblenden:
Titel: Cell Host & Microbe
Genre der Quelle: Zeitschrift
 Urheber:
Affiliations:
Ort, Verlag, Ausgabe: Cambridge, MA 02139 : Elsevier Inc.
Seiten: - Band / Heft: 27 (4) Artikelnummer: - Start- / Endseite: 601 - 613 Identifikator: ISSN: 1931-3128
CoNE: https://pure.mpg.de/cone/journals/resource/1931-3128