Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT
  DeepMAsED: evaluating the quality of metagenomic assemblies

Mineeva, O., Rojas-Carulla, M., Ley, R., Schölkopf, B., & Youngblut, N. (2020). DeepMAsED: evaluating the quality of metagenomic assemblies. Bioinformatics, 36(10), 3011-3017. doi:10.1093/bioinformatics/btaa124.

Item is

Basisdaten

ausblenden:
Genre: Zeitschriftenartikel

Externe Referenzen

einblenden:

Urheber

ausblenden:
 Urheber:
Mineeva, O, Autor
Rojas-Carulla, M, Autor
Ley, RE1, Autor           
Schölkopf, B, Autor
Youngblut, ND1, Autor           
Affiliations:
1Department Microbiome Science, Max Planck Institute for Developmental Biology, Max Planck Society, ou_3375789              

Inhalt

ausblenden:
Schlagwörter: -
 Zusammenfassung: Motivation: Methodological advances in metagenome assembly are rapidly increasing in the number of published metagenome assemblies. However, identifying misassemblies is challenging due to a lack of closely related reference genomes that can act as pseudo ground truth. Existing reference-free methods are no longer maintained, can make strong assumptions that may not hold across a diversity of research projects, and have not been validated on large-scale metagenome assemblies.

Results: We present DeepMAsED, a deep learning approach for identifying misassembled contigs without the need for reference genomes. Moreover, we provide an in silico pipeline for generating large-scale, realistic metagenome assemblies for comprehensive model training and testing. DeepMAsED accuracy substantially exceeds the state-of-the-art when applied to large and complex metagenome assemblies. Our model estimates a 1% contig misassembly rate in two recent large-scale metagenome assembly publications.

Conclusions: DeepMAsED accurately identifies misassemblies in metagenome-assembled contigs from a broad diversity of bacteria and archaea without the need for reference genomes or strong modeling assumptions. Running DeepMAsED is straight-forward, as well as is model re-training with our dataset generation pipeline. Therefore, DeepMAsED is a flexible misassembly classifier that can be applied to a wide range of metagenome assembly projects.

Details

ausblenden:
Sprache(n): eng - English
 Datum: 2020-05
 Publikationsstatus: Erschienen
 Seiten: -
 Ort, Verlag, Ausgabe: -
 Inhaltsverzeichnis: -
 Art der Begutachtung: Expertenbegutachtung
 Identifikatoren: DOI: 10.1093/bioinformatics/btaa124
PMID: 32096824
 Art des Abschluß: -

Veranstaltung

einblenden:

Entscheidung

einblenden:

Projektinformation

einblenden:

Quelle 1

ausblenden:
Titel: Bioinformatics
Genre der Quelle: Zeitschrift
 Urheber:
Affiliations:
Ort, Verlag, Ausgabe: Oxford : Oxford University Press
Seiten: - Band / Heft: 36 (10) Artikelnummer: - Start- / Endseite: 3011 - 3017 Identifikator: ISSN: 1367-4803
CoNE: https://pure.mpg.de/cone/journals/resource/954926969991