Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT
  The Need for Open Source Software in Machine Learning

Sonnenburg, S., Braun, M., Ong, C., Bengio, S., Bottou, L., Holmes, G., et al. (2007). The Need for Open Source Software in Machine Learning. The Journal of Machine Learning Research, 8, 2443-2466.

Item is

Basisdaten

ausblenden:
Genre: Zeitschriftenartikel

Externe Referenzen

ausblenden:
Beschreibung:
-
OA-Status:
Keine Angabe

Urheber

ausblenden:
 Urheber:
Sonnenburg, S, Autor           
Braun, ML, Autor
Ong, CS1, Autor           
Bengio, S, Autor
Bottou, L, Autor
Holmes , G, Autor
LeCun, Y, Autor
Müller, K-R, Autor           
Pereira, F, Autor
Rasmussen, CE, Autor           
Rätsch, G1, Autor           
Schölkopf, B, Autor           
Smola, A, Autor           
Vincent , P, Autor
Weston, J, Autor
Williamson, RC, Autor           
Affiliations:
1Rätsch Group, Friedrich Miescher Laboratory, Max Planck Society, Max-Planck-Ring 9, 72076 Tübingen, DE, ou_3378052              

Inhalt

ausblenden:
Schlagwörter: -
 Zusammenfassung: Open source tools have recently reached a level of maturity which makes them suitable for building large-scale real-world systems. At the same time, the field of machine learning has developed a large body of powerful learning algorithms for diverse applications. However, the true potential of these methods is not realized, since existing implementations are not openly shared, resulting in software with low usability, and weak interoperability. We argue that this situation can be significantly improved by increasing incentives for researchers to publish their software under an open source model. Additionally, we outline the problems authors are faced with when trying to publish algorithmic implementations of machine learning methods. We believe that a resource of peer reviewed software accompanied by short articles would be highly valuable to both the machine learning and the general scientific community.

Details

ausblenden:
Sprache(n):
 Datum: 2007-10
 Publikationsstatus: Erschienen
 Seiten: -
 Ort, Verlag, Ausgabe: -
 Inhaltsverzeichnis: -
 Art der Begutachtung: -
 Identifikatoren: -
 Art des Abschluß: -

Veranstaltung

einblenden:

Entscheidung

einblenden:

Projektinformation

einblenden:

Quelle 1

ausblenden:
Titel: The Journal of Machine Learning Research
Genre der Quelle: Zeitschrift
 Urheber:
Affiliations:
Ort, Verlag, Ausgabe: Cambridge, MA : MIT Press
Seiten: - Band / Heft: 8 Artikelnummer: - Start- / Endseite: 2443 - 2466 Identifikator: ISSN: 1532-4435
CoNE: https://pure.mpg.de/cone/journals/resource/111002212682020_1