Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT
  Interactions Between Carbon Metabolism and Photosynthetic Electron Transport in a Chlamydomonas reinhardtii Mutant Without CO2 Fixation by RuBisCO

Saint-Sorny, M., Brzezowski, P., Arrivault, S., Alric, J., & Johnson, X. (2022). Interactions Between Carbon Metabolism and Photosynthetic Electron Transport in a Chlamydomonas reinhardtii Mutant Without CO2 Fixation by RuBisCO. Frontiers in Plant Science, 13: 876439. doi:10.3389/fpls.2022.876439.

Item is

Basisdaten

einblenden: ausblenden:
Genre: Zeitschriftenartikel

Externe Referenzen

einblenden:

Urheber

einblenden:
ausblenden:
 Urheber:
Saint-Sorny, Maureen1, Autor
Brzezowski, Pawel1, Autor
Arrivault, S.2, Autor           
Alric, Jean1, Autor
Johnson, Xenie1, Autor
Affiliations:
1External Organizations, ou_persistent22              
2System Regulation, Department Stitt, Max Planck Institute of Molecular Plant Physiology, Max Planck Society, ou_1753327              

Inhalt

einblenden:
ausblenden:
Schlagwörter: -
 Zusammenfassung: A Chlamydomonas reinhardtii RuBisCO-less mutant, ΔrbcL, was used to study carbohydrate metabolism without fixation of atmospheric carbon. The regulatory mechanism(s) that control linear electron flow, known as “photosynthetic control,” are amplified in ΔrbcL at the onset of illumination. With the aim to understand the metabolites that control this regulatory response, we have correlated the kinetics of primary carbon metabolites to chlorophyll fluorescence induction curves. We identify that ΔrbcL in the absence of acetate generates adenosine triphosphate (ATP) via photosynthetic electron transfer reactions. Also, metabolites of the Calvin Benson Bassham (CBB) cycle are responsive to the light. Indeed, ribulose 1,5-bisphosphate (RuBP), the last intermediate before carboxylation by Ribulose-1,5-bisphosphate carboxylase-oxygenase, accumulates significantly with time, and CBB cycle intermediates for RuBP regeneration, dihydroxyacetone phosphate (DHAP), pentose phosphates and ribose-5-phosphate (R5P) are rapidly accumulated in the first seconds of illumination, then consumed, showing that although the CBB is blocked, these enzymes are still transiently active. In opposition, in the presence of acetate, consumption of CBB cycle intermediates is strongly diminished, suggesting that the link between light and primary carbon metabolism is almost lost. Phosphorylated hexoses and starch accumulate significantly. We show that acetate uptake results in heterotrophic metabolism dominating phototrophic metabolism, with glyoxylate and tricarboxylic acid (TCA) cycle intermediates being the most highly represented metabolites, specifically succinate and malate. These findings allow us to hypothesize which metabolites and metabolic pathways are relevant to the upregulation of processes like cyclic electron flow that are implicated in photosynthetic control mechanisms.

Details

einblenden:
ausblenden:
Sprache(n): eng - English
 Datum: 2022
 Publikationsstatus: Erschienen
 Seiten: -
 Ort, Verlag, Ausgabe: -
 Inhaltsverzeichnis: -
 Art der Begutachtung: -
 Identifikatoren: DOI: 10.3389/fpls.2022.876439
 Art des Abschluß: -

Veranstaltung

einblenden:

Entscheidung

einblenden:

Projektinformation

einblenden:

Quelle 1

einblenden:
ausblenden:
Titel: Frontiers in Plant Science
  Kurztitel : Front. Plant Sci.
Genre der Quelle: Zeitschrift
 Urheber:
Affiliations:
Ort, Verlag, Ausgabe: Lausanne : Frontiers Media
Seiten: - Band / Heft: 13 Artikelnummer: 876439 Start- / Endseite: - Identifikator: ISSN: 1664-462X
CoNE: https://pure.mpg.de/cone/journals/resource/1664462X