Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT
  Monitoring rapid evolution of plant populations at scale with Pool-Sequencing

Czech, L., Peng, Y., Spence, J., Lang, P., Bellagio, T., Hildebrandt, J., et al. (submitted). Monitoring rapid evolution of plant populations at scale with Pool-Sequencing.

Item is

Externe Referenzen

einblenden:

Urheber

ausblenden:
 Urheber:
Czech, L, Autor
Peng, Y, Autor
Spence, JP, Autor
Lang, PLM, Autor
Bellagio, T, Autor
Hildebrandt, J1, Autor           
Fritschi, K1, Autor           
Schwab, R1, 2, Autor           
Rowan, BA1, Autor           
GrENE-net consortium, Autor
Weigel, D1, Autor           
Scheepens, JF, Autor
Vasseur, F, Autor
Exposito-Alonso, M1, Autor           
Affiliations:
1Department Molecular Biology, Max Planck Institute for Biology Tübingen, Max Planck Society, ou_3371687              
2Research Group Ecological Genetics, Department Molecular Biology, Max Planck Institute for Biology Tübingen, Max Planck Society, ou_3502746              

Inhalt

ausblenden:
Schlagwörter: -
 Zusammenfassung: The change in allele frequencies within a population over time represents a fundamental process of evolution. By monitoring allele frequencies, we can analyze the effects of natural selection and genetic drift on populations. To efficiently track time-resolved genetic change, large experimental or wild populations can be sequenced as pools of individuals sampled over time using high-throughput genome sequencing (called the Evolve & Resequence approach, E&R). Here, we present a set of experiments using hundreds of natural genotypes of the model plant Arabidopsis thaliana to showcase the power of this approach to study rapid evolution at large scale. First, we validate that sequencing DNA directly extracted from pools of flowers from multiple plants -- organs that are relatively consistent in size and easy to sample -- produces comparable results to other, more expensive state-of-the-art approaches such as sampling and sequencing of individual leaves. Sequencing pools of flowers from 25-50 individuals at ~40X coverage recovers genome-wide frequencies in diverse populations with accuracy r>0.95. Secondly, to enable analyses of evolutionary adaptation using E&R approaches of plants in highly replicated environments, we provide open source tools that streamline sequencing data curation and calculate various population genetic statistics two orders of magnitude faster than current software. To directly demonstrate the usefulness of our method, we conducted a two-year outdoor evolution experiment with A. thaliana to show signals of rapid evolution in multiple genomic regions. We demonstrate how these laboratory and computational Pool-seq-based methods can be scaled to study hundreds of populations across many climates.

Details

ausblenden:
Sprache(n):
 Datum: 2022-02
 Publikationsstatus: Eingereicht
 Seiten: -
 Ort, Verlag, Ausgabe: -
 Inhaltsverzeichnis: -
 Art der Begutachtung: -
 Identifikatoren: DOI: 10.1101/2022.02.02.477408
 Art des Abschluß: -

Veranstaltung

einblenden:

Entscheidung

einblenden:

Projektinformation

einblenden:

Quelle

einblenden: