Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT
  Bridging the gap between classical and quantum many-body information dynamics

Pizzi, A., Malz, D., Nunnenkamp, A., & Knolle, J. (2022). Bridging the gap between classical and quantum many-body information dynamics. Physical Review B, 106: 214303. doi:10.1103/PhysRevB.106.214303.

Item is

Basisdaten

einblenden: ausblenden:
Genre: Zeitschriftenartikel

Dateien

einblenden: Dateien
ausblenden: Dateien
:
2204.03016v1 (Preprint), 3MB
 
Datei-Permalink:
-
Name:
DummyFileName
Beschreibung:
-
OA-Status:
Sichtbarkeit:
Privat
MIME-Typ / Prüfsumme:
application/pdf
Technische Metadaten:
Copyright Datum:
-
Copyright Info:
-
Lizenz:
-
:
6386.pdf (Verlagsversion), 2MB
 
Datei-Permalink:
-
Name:
6386.pdf
Beschreibung:
-
OA-Status:
Sichtbarkeit:
Eingeschränkt ( Max Planck Society (every institute); )
MIME-Typ / Prüfsumme:
application/pdf
Technische Metadaten:
Copyright Datum:
-
Copyright Info:
-
Lizenz:
-

Externe Referenzen

einblenden:

Urheber

einblenden:
ausblenden:
 Urheber:
Pizzi, Andrea, Autor
Malz, Daniel1, 2, Autor           
Nunnenkamp, Andreas, Autor
Knolle, Johannes2, Autor
Affiliations:
1Theory, Max Planck Institute of Quantum Optics, Max Planck Society, ou_1445571              
2MCQST - Munich Center for Quantum Science and Technology, External Organizations, ou_3330166              

Inhalt

einblenden:
ausblenden:
Schlagwörter: Quantum Physics, quant-ph
 Zusammenfassung: The fundamental question of how information spreads in closed quantum many-body systems is often addressed through the lens of the bipartite entanglement entropy, a quantity that describes correlations in a comprehensive (nonlocal) way. Among the most striking features of the entanglement entropy are its unbounded linear growth in the thermodynamic limit, its asymptotic extensivity in finite-size systems, and the possibility of measurement-induced phase transitions, all of which have no obvious classical counterpart. Here, we show how these key qualitative features emerge naturally also in classical information spreading, as long as one treats the classical many-body problem on par with the quantum one, that is, by explicitly accounting for the exponentially large classical probability distribution. Our analysis is supported by extensive numerics on prototypical cellular automata and Hamiltonian systems, for which we focus on the classical mutual information and also introduce a `classical entanglement entropy'. Our study sheds light on the nature of information spreading in classical and quantum systems, and opens new avenues for quantum-inspired classical approaches across physics, information theory, and statistics.

Details

einblenden:
ausblenden:
Sprache(n): eng - English
 Datum: 2022-04-062022-11-212022-12-062022-12-01
 Publikationsstatus: Erschienen
 Seiten: -
 Ort, Verlag, Ausgabe: -
 Inhaltsverzeichnis: -
 Art der Begutachtung: Expertenbegutachtung
 Identifikatoren: arXiv: 2204.03016v1
DOI: 10.1103/PhysRevB.106.214303
Anderer: 6386
 Art des Abschluß: -

Veranstaltung

einblenden:

Entscheidung

einblenden:

Projektinformation

einblenden: ausblenden:
Projektname : ERC Advanced Grant QUENOCOBA
Grant ID : 742102
Förderprogramm : Horizon 2020 (H2020)
Förderorganisation : European Commission (EC)
Projektname : Part of the Munich Quantum Valley
Grant ID : -
Förderprogramm : -
Förderorganisation : Bavarian state government with funds from the Hightech Agenda Bayern Plus

Quelle 1

einblenden:
ausblenden:
Titel: Physical Review B
  Kurztitel : Phys. Rev. B
Genre der Quelle: Zeitschrift
 Urheber:
Affiliations:
Ort, Verlag, Ausgabe: Woodbury, NY : American Physical Society
Seiten: - Band / Heft: 106 Artikelnummer: 214303 Start- / Endseite: - Identifikator: ISSN: 1098-0121
CoNE: https://pure.mpg.de/cone/journals/resource/954925225008