English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT
  Graph neural networks for the prediction of infinite dilution activity coefficients

Sanchez Medina, E. I., Linke, S., Stoll, M., & Sundmacher, K. (2022). Graph neural networks for the prediction of infinite dilution activity coefficients. Digital Discovery, 1(3), 216-225. doi:10.1039/D1DD00037C.

Item is

Basic

show hide
Genre: Journal Article

Files

show Files
hide Files
:
sundmacher_3379764.pdf (Publisher version), 2MB
Name:
sundmacher_3379764.pdf
Description:
-
Visibility:
Public
MIME-Type / Checksum:
application/pdf / [MD5]
Technical Metadata:
Copyright Date:
-
Copyright Info:
© 2022 The Author(s). Published by the Royal Society of Chemistry. This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence.
License:
-

Locators

show

Creators

show
hide
 Creators:
Sanchez Medina, Edgar Ivan1, 2, Author              
Linke, Steffen1, 2, Author              
Stoll, Martin3, Author
Sundmacher, Kai2, 4, Author              
Affiliations:
1International Max Planck Research School (IMPRS), Max Planck Institute for Dynamics of Complex Technical Systems, Max Planck Society, ou_1738143              
2Otto-von-Guericke-Universität Magdeburg, External Organizations, ou_1738156              
3Chair of Scientific Computing, Department of Mathematics, Technische Universität Chemnitz, 09107 Chemnitz, Germany , ou_persistent22              
4Process Systems Engineering, Max Planck Institute for Dynamics of Complex Technical Systems, Max Planck Society, ou_1738151              

Content

show

Details

show
hide
Language(s): eng - English
 Dates: 2022
 Publication Status: Published online
 Pages: -
 Publishing info: -
 Table of Contents: -
 Rev. Type: Peer
 Identifiers: DOI: 10.1039/D1DD00037C
 Degree: -

Event

show

Legal Case

show

Project information

show

Source 1

show
hide
Title: Digital Discovery
Source Genre: Journal
 Creator(s):
Affiliations:
Publ. Info: -
Pages: - Volume / Issue: 1 (3) Sequence Number: - Start / End Page: 216 - 225 Identifier: ISSN: 2635-098X