Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT
  Molecular dynamics simulations of an engineered T4 lysozyme exclude helix to sheet transition, and provide insights into long distance, intra-protein switchable motion

Biggers, L., Elhabashy, H., Ackad, E., & Yousef, M. (2020). Molecular dynamics simulations of an engineered T4 lysozyme exclude helix to sheet transition, and provide insights into long distance, intra-protein switchable motion. Protein Science, 29(2), 542-554. doi:10.1002/pro.3780.

Item is

Basisdaten

einblenden: ausblenden:
Genre: Zeitschriftenartikel

Externe Referenzen

einblenden:

Urheber

einblenden:
ausblenden:
 Urheber:
Biggers, L, Autor
Elhabashy, H1, Autor           
Ackad, E, Autor
Yousef, MS, Autor
Affiliations:
1Department Protein Evolution, Max Planck Institute for Developmental Biology, Max Planck Society, Max-Planck-Ring 5, 72076 Tübingen, DE, ou_3375791              

Inhalt

einblenden:
ausblenden:
Schlagwörter: -
 Zusammenfassung: An engineered variant of T4 lysozyme serves as a model for studying induced remote conformational changes in a full protein context. The design involves a duplicated surface helix, flanked by two loops, that switches between two different conformations spanning about 20 Å. Molecular dynamics simulations of the engineered protein, up to 1 μs, rule out α-helix to β-sheet transitions within the duplicated helix as suggested by others. These simulations highlight how the use of different force fields can lead to radical differences in the structure of the protein. In addition, Markov state modeling and transition path theory were employed to map a 6.6 μs simulation for possible early intermediate states and to provide insights into the onset of the switching motion. The putative intermediates involve the folding of one helical turn in the C-terminal loop through energy driven, sequential rearrangement of nearby salt bridges around the key residue Arg63. These results provide a first step towards understanding the energetics and dynamics of a rather complicated intra-protein motion.

Details

einblenden:
ausblenden:
Sprache(n):
 Datum: 2020-02
 Publikationsstatus: Erschienen
 Seiten: -
 Ort, Verlag, Ausgabe: -
 Inhaltsverzeichnis: -
 Art der Begutachtung: -
 Identifikatoren: DOI: 10.1002/pro.3780
PMID: 31702853
 Art des Abschluß: -

Veranstaltung

einblenden:

Entscheidung

einblenden:

Projektinformation

einblenden:

Quelle 1

einblenden:
ausblenden:
Titel: Protein Science
Genre der Quelle: Zeitschrift
 Urheber:
Affiliations:
Ort, Verlag, Ausgabe: New York, N.Y. : Cambridge University Press
Seiten: - Band / Heft: 29 (2) Artikelnummer: - Start- / Endseite: 542 - 554 Identifikator: ISSN: 0961-8368
CoNE: https://pure.mpg.de/cone/journals/resource/954925342760