Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT
  MHCquant: Automated and Reproducible Data Analysis for Immunopeptidomics

Bichmann, L., Nelde, A., Ghosh, M., Heumos, L., Mohr, C., Peltzer, A., et al. (2019). MHCquant: Automated and Reproducible Data Analysis for Immunopeptidomics. Journal of Proteome Research, 18(11), 3876-3884. doi:10.1021/acs.jproteome.9b00313.

Item is

Basisdaten

ausblenden:
Genre: Zeitschriftenartikel

Externe Referenzen

einblenden:

Urheber

ausblenden:
 Urheber:
Bichmann, L, Autor
Nelde, A, Autor
Ghosh, M, Autor
Heumos, L, Autor
Mohr, C, Autor
Peltzer, A, Autor
Kuchenbecker, L, Autor
Sachsenberg, T, Autor           
Walz, JS, Autor
Stevanović, S, Autor
Rammensee, H-G, Autor
Kohlbacher, O1, Autor           
Affiliations:
1Research Group Biomolecular Interactions, Max Planck Institute for Developmental Biology, Max Planck Society, ou_3380092              

Inhalt

ausblenden:
Schlagwörter: -
 Zusammenfassung: Personalized multipeptide vaccines are currently being discussed intensively for tumor immunotherapy. In order to identify epitopes-short, immunogenic peptides-suitable for eliciting a tumor-specific immune response, human leukocyte antigen-presented peptides are isolated by immunoaffinity purification from cancer tissue samples and analyzed by liquid chromatography-coupled tandem mass spectrometry (LC-MS/MS). Here, we present MHCquant, a fully automated, portable computational pipeline able to process LC-MS/MS data automatically and generate annotated, false discovery rate-controlled lists of (neo-)epitopes with associated relative quantification information. We could show that MHCquant achieves higher sensitivity than established methods. While obtaining the highest number of unique peptides, the rate of predicted MHC binders remains still comparable to other tools. Reprocessing of the data from a previously published study resulted in the identification of several neoepitopes not detected by previously applied methods. MHCquant integrates tailor-made pipeline components with existing open-source software into a coherent processing workflow. Container-based virtualization permits execution of this workflow without complex software installation, execution on cluster/cloud infrastructures, and full reproducibility of the results. Integration with the data analysis workbench KNIME enables easy mining of large-scale immunopeptidomics data sets. MHCquant is available as open-source software along with accompanying documentation on our website at https://www.openms.de/mhcquant/ .

Details

ausblenden:
Sprache(n):
 Datum: 2019-11
 Publikationsstatus: Erschienen
 Seiten: -
 Ort, Verlag, Ausgabe: -
 Inhaltsverzeichnis: -
 Art der Begutachtung: -
 Identifikatoren: DOI: 10.1021/acs.jproteome.9b00313
PMID: 31589052
 Art des Abschluß: -

Veranstaltung

einblenden:

Entscheidung

einblenden:

Projektinformation

einblenden:

Quelle 1

ausblenden:
Titel: Journal of Proteome Research
  Andere : J. Proteome Res.
Genre der Quelle: Zeitschrift
 Urheber:
Affiliations:
Ort, Verlag, Ausgabe: Washington, D.C. : American Chemical Society
Seiten: - Band / Heft: 18 (11) Artikelnummer: - Start- / Endseite: 3876 - 3884 Identifikator: ISSN: 1535-3893
CoNE: https://pure.mpg.de/cone/journals/resource/111019664290000