Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT
  Deciphering the physiological response of Escherichia coli under high ATP demand

Boecker, S., Slaviero, G., Schramm, T., Szymanski, W. G., Steuer, R., Link, H., et al. (2021). Deciphering the physiological response of Escherichia coli under high ATP demand. Molecular Systems Biology, 17(12): e10504. doi:10.15252/msb.202110504.

Item is

Basisdaten

einblenden: ausblenden:
Genre: Zeitschriftenartikel

Externe Referenzen

einblenden:
ausblenden:
externe Referenz:
https://doi.org/10.15252/msb.202110504 (Verlagsversion)
Beschreibung:
Verlagsversion
OA-Status:
Gold

Urheber

einblenden:
ausblenden:
 Urheber:
Boecker, S., Autor
Slaviero, G., Autor
Schramm, T., Autor
Szymanski, W. G.1, Autor           
Steuer, R., Autor
Link, H., Autor
Klamt, S., Autor
Affiliations:
1Core Facility Mass Spectrometry and Proteomics, Max Planck Institute for Terrestrial Microbiology, Max Planck Society, ou_3266266              

Inhalt

einblenden:
ausblenden:
Schlagwörter: *Adenosine Triphosphate/metabolism Energy Metabolism *Escherichia coli/genetics/metabolism Glycolysis *ATP homeostasis *central metabolism *glycolysis *kinetic model *metabolic engineering
 Zusammenfassung: One long-standing question in microbiology is how microbes buffer perturbations in energy metabolism. In this study, we systematically analyzed the impact of different levels of ATP demand in Escherichia coli under various conditions (aerobic and anaerobic, with and without cell growth). One key finding is that, under all conditions tested, the glucose uptake increases with rising ATP demand, but only to a critical level beyond which it drops markedly, even below wild-type levels. Focusing on anaerobic growth and using metabolomics and proteomics data in combination with a kinetic model, we show that this biphasic behavior is induced by the dual dependency of the phosphofructokinase on ATP (substrate) and ADP (allosteric activator). This mechanism buffers increased ATP demands by a higher glycolytic flux but, as shown herein, it collapses under very low ATP concentrations. Model analysis also revealed two major rate-controlling steps in the glycolysis under high ATP demand, which could be confirmed experimentally. Our results provide new insights on fundamental mechanisms of bacterial energy metabolism and guide the rational engineering of highly productive cell factories.

Details

einblenden:
ausblenden:
Sprache(n): eng - English
 Datum: 2021-12-21
 Publikationsstatus: Erschienen
 Seiten: -
 Ort, Verlag, Ausgabe: -
 Inhaltsverzeichnis: -
 Art der Begutachtung: Expertenbegutachtung
 Identifikatoren: Anderer: 34928538
DOI: 10.15252/msb.202110504
ISSN: 1744-4292 (Electronic)1744-4292 (Linking)
 Art des Abschluß: -

Veranstaltung

einblenden:

Entscheidung

einblenden:

Projektinformation

einblenden:

Quelle 1

einblenden:
ausblenden:
Titel: Molecular Systems Biology
Genre der Quelle: Zeitschrift
 Urheber:
Affiliations:
Ort, Verlag, Ausgabe: London : Nature Pub. Group
Seiten: - Band / Heft: 17 (12) Artikelnummer: e10504 Start- / Endseite: - Identifikator: ISSN: 1744-4292
CoNE: https://pure.mpg.de/cone/journals/resource/1000000000021290