Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT
  Fe3+-hosting carbon phases in the deep Earth

Albers, C., Sakrowski, R., Libon, L., Spiekermann, G., Winkler, B., Schmidt, C., et al. (2022). Fe3+-hosting carbon phases in the deep Earth. Physical Review B, 105(8): 085155, pp. 1-10. doi:10.1103/PhysRevB.105.085155.

Item is

Basisdaten

einblenden: ausblenden:
Genre: Zeitschriftenartikel

Externe Referenzen

einblenden:

Urheber

einblenden:
ausblenden:
 Urheber:
Albers, Christian1, Autor
Sakrowski, Robin1, Autor
Libon, Lelia1, Autor
Spiekermann, Georg1, Autor
Winkler, Bjoern1, Autor
Schmidt, Christian1, Autor
Bayarjargal, Lkhamsuren1, Autor
Cerantola, Valerio1, Autor
Chariton, Stella1, Autor
Giordano, Nico1, Autor
Gretarsson, Hlynur2, Autor           
Kaa, Johannes1, Autor
Liermann, Hanns-Peter1, Autor
Sundermann, Martin2, Autor           
Thiering, Nicola1, Autor
Tolan, Metin1, Autor
Wilke, Max1, Autor
Sternemann, Christian1, Autor
Affiliations:
1External Organizations, ou_persistent22              
2Physics of Correlated Matter, Max Planck Institute for Chemical Physics of Solids, Max Planck Society, ou_1863445              

Inhalt

einblenden:
ausblenden:
Schlagwörter: -
 Zusammenfassung: Iron-bearing carbonates play an important role in Earth's carbon cycle. Owing to their stability at mantle conditions, recently discovered iron carbonates with tetrahedrally coordinated carbon atoms are candidates for carbon storage in the deep Earth. The carbonates' iron oxidation and spin state at extreme pressure and temperature conditions contribute to the redox conditions and element partitioning in the deep mantle. By laser heating FeCO3 at pressures of about 83 GPa, Fe43+C3O12 and Fe22+Fe23+C4O13 were synthesized and then investigated by x-ray emission spectroscopy to elucidate their spin state, both in situ and temperature quenched. Our experimental results show both phases in a high-spin state at all pressures and over the entire temperature range investigated, i.e., up to 3000 K. The spin state is conserved after temperature quenching. A formation path is favored where Fe43+C3O12 forms first and then reacts to Fe22+Fe23+C4O13, most likely accompanied by the formation of oxides. Density functional theory calculations of Fe22+Fe23+C4O13 at 80 GPa confirm the experimental findings with both ferric and ferrous iron in high-spin state with antiferromagnetic order at 80 GPa. As the intercrystalline cation partitioning between the Fe-bearing carbonates and the surrounding perovskite and ferropericlase depends on the spin state of the iron, an understanding of the redox conditions prevalent in subducted slab regions in the lower mantle has to take the latter into account. Especially, Fe22+Fe23+C4O13 may play a key role in subducted material in the lower mantle, potentially with a similar role as silicate perovskite.

Details

einblenden:
ausblenden:
Sprache(n): eng - English
 Datum: 2022-02-282022-02-28
 Publikationsstatus: Erschienen
 Seiten: -
 Ort, Verlag, Ausgabe: -
 Inhaltsverzeichnis: -
 Art der Begutachtung: -
 Identifikatoren: ISI: 000766646200001
DOI: 10.1103/PhysRevB.105.085155
 Art des Abschluß: -

Veranstaltung

einblenden:

Entscheidung

einblenden:

Projektinformation

einblenden:

Quelle 1

einblenden:
ausblenden:
Titel: Physical Review B
  Kurztitel : Phys. Rev. B
Genre der Quelle: Zeitschrift
 Urheber:
Affiliations:
Ort, Verlag, Ausgabe: Woodbury, NY : American Physical Society
Seiten: - Band / Heft: 105 (8) Artikelnummer: 085155 Start- / Endseite: 1 - 10 Identifikator: ISSN: 1098-0121
CoNE: https://pure.mpg.de/cone/journals/resource/954925225008