Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

 
 
DownloadE-Mail
  EPR Spectroscopy of Cu(II) Complexes: Prediction of g-Tensors Using Double-Hybrid Density Functional Theory

Drosou, M., Mitsopoulou, C. A., Orio, M., & Pantazis, D. A. (2022). EPR Spectroscopy of Cu(II) Complexes: Prediction of g-Tensors Using Double-Hybrid Density Functional Theory. Magnetochemistry, 8(4): 36. doi:10.3390/magnetochemistry8040036.

Item is

Basisdaten

einblenden: ausblenden:
Genre: Zeitschriftenartikel

Externe Referenzen

einblenden:

Urheber

einblenden:
ausblenden:
 Urheber:
Drosou, Maria1, Autor
Mitsopoulou, Christiana A.1, Autor
Orio, Maylis2, Autor
Pantazis, Dimitrios A.3, Autor           
Affiliations:
1Inorganic Chemistry Laboratory, National and Kapodistrian University of Athens, Panepistimiopolis, 15771 Zografou, Greece, ou_persistent22              
2CNRS, Aix-Marseille Université, Centrale Marseille, iSm2, 13013 Marseille, France, ou_persistent22              
3Research Group Pantazis, Max-Planck-Institut für Kohlenforschung, Max Planck Society, ou_2541711              

Inhalt

einblenden:
ausblenden:
Schlagwörter: copper; g-tensors; density functional theory; double-hybrid functionals; theoretical spectroscopy
 Zusammenfassung: Computational electron paramagnetic resonance (EPR) spectroscopy is an important field of applied quantum chemistry that contributes greatly to connecting spectroscopic observations with the fundamental description of electronic structure for open-shell molecules. However, not all EPR parameters can be predicted accurately and reliably for all chemical systems. Among transition metal ions, Cu(II) centers in inorganic chemistry and biology, and their associated EPR properties such as hyperfine coupling and g-tensors, pose exceptional difficulties for all levels of quantum chemistry. In the present work, we approach the problem of Cu(II) g-tensor calculations using double-hybrid density functional theory (DHDFT). Using a reference set of 18 structurally and spectroscopically characterized Cu(II) complexes, we evaluate a wide range of modern double-hybrid density functionals (DHDFs) that have not been applied previously to this problem. Our results suggest that the current generation of DHDFs consistently and systematically outperform other computational approaches. The B2GP-PLYP and PBE0-DH functionals are singled out as the best DHDFs on average for the prediction of Cu(II) g-tensors. The performance of the different functionals is discussed and suggestions are made for practical applications and future methodological developments.

Details

einblenden:
ausblenden:
Sprache(n): eng - English
 Datum: 2022-02-192022-03-192022-03-23
 Publikationsstatus: Online veröffentlicht
 Seiten: -
 Ort, Verlag, Ausgabe: -
 Inhaltsverzeichnis: -
 Art der Begutachtung: Expertenbegutachtung
 Identifikatoren: DOI: 10.3390/magnetochemistry8040036
 Art des Abschluß: -

Veranstaltung

einblenden:

Entscheidung

einblenden:

Projektinformation

einblenden:

Quelle 1

einblenden:
ausblenden:
Titel: Magnetochemistry
  Kurztitel : Magnetochemistry
Genre der Quelle: Zeitschrift
 Urheber:
Affiliations:
Ort, Verlag, Ausgabe: Basel, Switzerland : MDPI AG
Seiten: - Band / Heft: 8 (4) Artikelnummer: 36 Start- / Endseite: - Identifikator: CoNE: https://pure.mpg.de/cone/journals/resource/2312-7481