English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT
  Importance truncation for the in-medium similarity renormalization group

Hoppe, J., Tichai, A., Heinz, M., Hebeler, K., & Schwenk, A. (2022). Importance truncation for the in-medium similarity renormalization group. Physical Review C, 105(3): 034324. doi:10.1103/PhysRevC.105.034324.

Item is

Files

show Files
hide Files
:
2110.09390.pdf (Preprint), 569KB
Name:
2110.09390.pdf
Description:
File downloaded from arXiv at 2022-05-10 13:30
OA-Status:
Visibility:
Public
MIME-Type / Checksum:
application/pdf / [MD5]
Technical Metadata:
Copyright Date:
-
Copyright Info:
-

Locators

show
hide
Description:
open access
OA-Status:

Creators

show
hide
 Creators:
Hoppe, J., Author
Tichai, A.1, Author           
Heinz, M.1, Author           
Hebeler, K.1, Author           
Schwenk, A.1, Author           
Affiliations:
1Division Prof. Dr. Klaus Blaum, MPI for Nuclear Physics, Max Planck Society, ou_904548              

Content

show
hide
Free keywords: Nuclear Theory, nucl-th
 MPINP: Starke Wechselwirkung und exotische Kerne – Abteilung Blaum
 Abstract: Ab initio nuclear many-body frameworks require extensive computational
resources, especially when targeting heavier nuclei. Importance-truncation (IT)
techniques allow to significantly reduce the dimensionality of the problem by
neglecting unimportant contributions to the solution of the many-body problem.
In this work, we apply IT methods to the nonperturbative in-medium similarity
renormalization group (IMSRG) approach and investigate the induced errors for
ground-state energies in different mass regimes based on different nuclear
Hamiltonians. We study various importance measures, which define the IT
selection, and identify two measures that perform best, resulting in only small
errors to the full IMSRG(2) calculations even for sizable compression ratios.
The neglected contributions are accounted for in a perturbative way and serve
as an estimate of the IT-induced error. Overall we find that the IT-IMSRG(2)
performs well across all systems considered, while the largest compression
ratios for a given error can be achieved when using soft Hamiltonians and for
large single-particle bases.

Details

show
hide
Language(s):
 Dates: 2022-03-22
 Publication Status: Published online
 Pages: -
 Publishing info: -
 Table of Contents: -
 Rev. Type: -
 Identifiers: arXiv: 2110.09390
DOI: 10.1103/PhysRevC.105.034324
 Degree: -

Event

show

Legal Case

show

Project information

show

Source 1

show
hide
Title: Physical Review C
  Other : Phys. Rev. C
Source Genre: Journal
 Creator(s):
Affiliations:
Publ. Info: New York, NY : American Physical Society
Pages: - Volume / Issue: 105 (3) Sequence Number: 034324 Start / End Page: - Identifier: ISSN: 0556-2813
CoNE: https://pure.mpg.de/cone/journals/resource/954925225009