Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT
  Systematic Comparison of Genetic Algorithm and Basin Hopping Approaches to the Global Optimization of Si(111) Surface Reconstructions

Bauer, M. N., Probert, M. I. J., & Panosetti, C. (2022). Systematic Comparison of Genetic Algorithm and Basin Hopping Approaches to the Global Optimization of Si(111) Surface Reconstructions. The Journal of Physical Chemistry A, 126(19), 3043-3056. doi:10.1021/acs.jpca.2c00647.

Item is

Basisdaten

einblenden: ausblenden:
Genre: Zeitschriftenartikel

Dateien

einblenden: Dateien
ausblenden: Dateien
:
acs.jpca.2c00647.pdf (Verlagsversion), 5MB
Name:
acs.jpca.2c00647.pdf
Beschreibung:
-
OA-Status:
Hybrid
Sichtbarkeit:
Öffentlich
MIME-Typ / Prüfsumme:
application/pdf / [MD5]
Technische Metadaten:
Copyright Datum:
2022
Copyright Info:
The Author(s)

Externe Referenzen

einblenden:

Urheber

einblenden:
ausblenden:
 Urheber:
Bauer, Maximilian N.1, 2, Autor
Probert, Matt I. J.1, Autor
Panosetti, Chiara2, 3, Autor           
Affiliations:
1Department of Physics, University of York, York YO10 5DD, United Kingdom, ou_persistent22              
2Technical University of Munich, Lichtenbergstraße 4, 85748 Garching, Germany, ou_persistent22              
3Theory, Fritz Haber Institute, Max Planck Society, ou_634547              

Inhalt

einblenden:
ausblenden:
Schlagwörter: -
 Zusammenfassung: We present a systematic study of two widely used material structure prediction methods, the Genetic Algorithm and Basin Hopping approaches to global optimization, in a search for the 3 × 3, 5 × 5, and 7 × 7 reconstructions of the Si(111) surface. The Si(111) 7 × 7 reconstruction is the largest and most complex surface reconstruction known, and finding it is a very exacting test for global optimization methods. In this paper, we introduce a modification to previous Genetic Algorithm work on structure search for periodic systems, to allow the efficient search for surface reconstructions, and present a rigorous study of the effect of the different parameters of the algorithm. We also perform a detailed comparison with the recently improved Basin Hopping algorithm using Delocalized Internal Coordinates. Both algorithms succeeded in either resolving the 3 × 3, 5 × 5, and 7 × 7 DAS surface reconstructions or getting “sufficiently close”, i.e., identifying structures that only differ for the positions of a few atoms as well as thermally accessible structures within kBT/unit area of the global minimum, with T = 300 K. Overall, the Genetic Algorithm is more robust with respect to parameter choice and in success rate, while the Basin Hopping method occasionally exhibits some advantages in speed of convergence. In line with previous studies, the results confirm that robustness, success, and speed of convergence of either approach are strongly influenced by how much the trial moves tend to preserve favorable bonding patterns once these appear.

Details

einblenden:
ausblenden:
Sprache(n): eng - English
 Datum: 2022-04-212022-01-262022-05-062022-05-19
 Publikationsstatus: Erschienen
 Seiten: 14
 Ort, Verlag, Ausgabe: -
 Inhaltsverzeichnis: -
 Art der Begutachtung: Expertenbegutachtung
 Identifikatoren: DOI: 10.1021/acs.jpca.2c00647
 Art des Abschluß: -

Veranstaltung

einblenden:

Entscheidung

einblenden:

Projektinformation

einblenden:

Quelle 1

einblenden:
ausblenden:
Titel: The Journal of Physical Chemistry A
  Kurztitel : J. Phys. Chem. A
Genre der Quelle: Zeitschrift
 Urheber:
Affiliations:
Ort, Verlag, Ausgabe: Columbus, OH : American Chemical Society
Seiten: 14 Band / Heft: 126 (19) Artikelnummer: - Start- / Endseite: 3043 - 3056 Identifikator: ISSN: 1089-5639
CoNE: https://pure.mpg.de/cone/journals/resource/954926947766_4