Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT
  Evaluation of marginal likelihoods via the density of states

Habeck, M. (2012). Evaluation of marginal likelihoods via the density of states. In M. Lawrence, & N. Girolami (Eds.), Artificial Intelligence and Statistics, 21-23 April 2012, La Palma, Canary Islands (pp. 486-494). Madison, WI, USA: International Machine Learning Society.

Item is

Basisdaten

einblenden: ausblenden:
Genre: Konferenzbeitrag

Externe Referenzen

einblenden:
ausblenden:
externe Referenz:
http://proceedings.mlr.press/v22/habeck12/habeck12.pdf (Verlagsversion)
Beschreibung:
-
OA-Status:
Keine Angabe

Urheber

einblenden:
ausblenden:
 Urheber:
Habeck, M1, 2, 3, Autor           
Affiliations:
1Dept. Empirical Inference, Max Planck Institute for Intelligent Systems, Max Planck Society, ou_1497647              
2Max Planck Institute for Biological Cybernetics, Max Planck Society, Spemannstrasse 38, 72076 Tübingen, DE, ou_1497794              
3Department Protein Evolution, Max Planck Institute for Developmental Biology, Max Planck Society, Max-Planck-Ring 5, 72076 Tübingen, DE, ou_3375791              

Inhalt

einblenden:
ausblenden:
Schlagwörter: -
 Zusammenfassung: Bayesian model comparison involves the evaluation of the marginal likelihood, the expectation of the likelihood under the prior distribution. Typically, this high-dimensional integral over all model parameters is approximated using Markov chain Monte Carlo methods. Thermodynamic integration is a popular method to estimate the marginal likelihood by using samples from annealed posteriors. Here we show that there exists a robust and flexible alternative. The new method estimates the density of states, which counts the number of states associated with a particular value of the likelihood. If the density of states is known, computation of the marginal likelihood reduces to a one- dimensional integral. We outline a maximum likelihood procedure to estimate the density of states from annealed posterior samples. We apply our method to various likelihoods and show that it is superior to thermodynamic integration in that it is more flexible with regard to the annealing schedule and the family of bridging distributions. Finally, we discuss the relation of our method with Skilling's nested sampling.

Details

einblenden:
ausblenden:
Sprache(n):
 Datum: 2012-04
 Publikationsstatus: Erschienen
 Seiten: -
 Ort, Verlag, Ausgabe: -
 Inhaltsverzeichnis: -
 Art der Begutachtung: -
 Identifikatoren: BibTex Citekey: Habeck2012_3
 Art des Abschluß: -

Veranstaltung

einblenden:
ausblenden:
Titel: Fifteenth International Conference on Artificial Intelligence and Statistics (AISTATS 2012)
Veranstaltungsort: La Palma, Canary Islands, Spain
Start-/Enddatum: 2012-04-21 - 2012-04-23

Entscheidung

einblenden:

Projektinformation

einblenden:

Quelle 1

einblenden:
ausblenden:
Titel: Artificial Intelligence and Statistics, 21-23 April 2012, La Palma, Canary Islands
Genre der Quelle: Konferenzband
 Urheber:
Lawrence, M, Herausgeber
Girolami, N, Herausgeber
Affiliations:
-
Ort, Verlag, Ausgabe: Madison, WI, USA : International Machine Learning Society
Seiten: - Band / Heft: - Artikelnummer: - Start- / Endseite: 486 - 494 Identifikator: -

Quelle 2

einblenden:
ausblenden:
Titel: JMLR Workshop and Conference Proceedings
Genre der Quelle: Reihe
 Urheber:
Affiliations:
Ort, Verlag, Ausgabe: -
Seiten: - Band / Heft: 22 Artikelnummer: - Start- / Endseite: - Identifikator: -