Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT
  A universal chemical-induced tensile strain tuning strategy to boost oxygen-evolving electrocatalysis on perovskite oxides

Guan, D., Zhong, J., Xu, H., Huang, Y.-C., Hu, Z., Chen, B., et al. (2022). A universal chemical-induced tensile strain tuning strategy to boost oxygen-evolving electrocatalysis on perovskite oxides. Applied Physics Reviews, 9(1): 011422, pp. 1-12. doi:10.1063/5.0083059.

Item is

Basisdaten

einblenden: ausblenden:
Genre: Zeitschriftenartikel

Externe Referenzen

einblenden:

Urheber

einblenden:
ausblenden:
 Urheber:
Guan, Daqin1, Autor
Zhong, Jian1, Autor
Xu, Hengyue1, Autor
Huang, Yu-Cheng1, Autor
Hu, Zhiwei2, Autor           
Chen, Bin1, Autor
Zhang, Yuan1, Autor
Ni, Meng1, Autor
Xu, Xiaomin1, Autor
Zhou, Wei1, Autor
Shao, Zongping1, Autor
Affiliations:
1External Organizations, ou_persistent22              
2Zhiwei Hu, Physics of Correlated Matter, Max Planck Institute for Chemical Physics of Solids, Max Planck Society, ou_1863461              

Inhalt

einblenden:
ausblenden:
Schlagwörter: -
 Zusammenfassung: Exploring effective, facile, and universal tuning strategies to optimize material physicochemical properties and catalysis processes is critical for many sustainable energy systems, but still challenging. Herein, we succeed to introduce tensile strain into various perovskites via a facile thermochemical reduction method, which can greatly improve material performance for the bottleneck oxygen-evolving reaction in water electrolysis. As an ideal proof-of-concept, such a chemical-induced tensile strain turns hydrophobic Ba5Co4.17Fe0.83O14-delta perovskite into the hydrophilic one by modulating its solid-liquid tension, contributing to its beneficial adsorption of important hydroxyl reactants as evidenced by fast operando spectroscopy. Both surface-sensitive and bulk-sensitive absorption spectra show that this strategy introduces oxygen vacancies into the saturated face-sharing Co-O motifs of Ba5Co4.17Fe0.83O14-delta and transforms such local structures into the unsaturated edge-sharing units with positive charges and enlarged electrochemical active areas, creating a molecular-level hydroxyl pool. Theoretical computations reveal that this strategy well reduces the thermodynamic energy barrier for hydroxyl adsorption, lowers the electronic work function, and optimizes the charge/electrostatic potential distribution to facilitate the electron transport between active sites and hydroxyl reactants. Also, this strategy is reliable for other single, double, and Ruddlesden-Popper perovskites. We believe that this finding will enlighten rational material design and in-depth understanding for many potential applications.& nbsp;Published under an exclusive license by AIP Publishing.

Details

einblenden:
ausblenden:
Sprache(n): eng - English
 Datum: 2022-03-172022-03-17
 Publikationsstatus: Erschienen
 Seiten: -
 Ort, Verlag, Ausgabe: -
 Inhaltsverzeichnis: -
 Art der Begutachtung: -
 Identifikatoren: ISI: 000779058400001
DOI: 10.1063/5.0083059
 Art des Abschluß: -

Veranstaltung

einblenden:

Entscheidung

einblenden:

Projektinformation

einblenden:

Quelle 1

einblenden:
ausblenden:
Titel: Applied Physics Reviews
  Kurztitel : Appl. Phys. Rev.
Genre der Quelle: Zeitschrift
 Urheber:
Affiliations:
Ort, Verlag, Ausgabe: USA : American Institute of Physics
Seiten: - Band / Heft: 9 (1) Artikelnummer: 011422 Start- / Endseite: 1 - 12 Identifikator: ISSN: 1931-9401
CoNE: https://pure.mpg.de/cone/journals/resource/1931-9401