Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT
  Spherulitic crystal growth drives mineral deposition patterns in collagen-based materials

Macías-Sánchez, E., Tarakina, N. V., Ivanov, D., Blouin, S., Berzlanovich, A. M., & Fratzl, P. (2022). Spherulitic crystal growth drives mineral deposition patterns in collagen-based materials. Advanced Functional Materials, 32(31): 2200504. doi:10.1002/adfm.202200504.

Item is

Basisdaten

einblenden: ausblenden:
Genre: Zeitschriftenartikel

Dateien

einblenden: Dateien
ausblenden: Dateien
:
Article.pdf (Verlagsversion), 6MB
Name:
Article.pdf
Beschreibung:
-
OA-Status:
Hybrid
Sichtbarkeit:
Öffentlich
MIME-Typ / Prüfsumme:
application/pdf / [MD5]
Technische Metadaten:
Copyright Datum:
-
Copyright Info:
-

Externe Referenzen

einblenden:

Urheber

einblenden:
ausblenden:
 Urheber:
Macías-Sánchez, Elena1, Autor           
Tarakina, Nadezda V.2, Autor           
Ivanov, Danail, Autor
Blouin, Stéphane, Autor
Berzlanovich, Andrea M., Autor
Fratzl, Peter3, Autor           
Affiliations:
1Luca Bertinetti, Biomaterialien, Max Planck Institute of Colloids and Interfaces, Max Planck Society, ou_2379691              
2Nadezda V. Tarakina, Kolloidchemie, Max Planck Institute of Colloids and Interfaces, Max Planck Society, ou_2522693              
3Peter Fratzl, Biomaterialien, Max Planck Institute of Colloids and Interfaces, Max Planck Society, ou_1863294              

Inhalt

einblenden:
ausblenden:
Schlagwörter: 3D electron microscopy; bone mineralization; collagen mineralization; energy dispersive X-ray spectroscopy; transmission electron microscopy
 Zusammenfassung: The formation of the hard tissues that provide support and mobility to organisms is achieved through the interplay of inorganic crystals and an organic framework composed of collagen and a small percentage of non-collagenous proteins. Despite their clinical relevance, the mechanisms governing mineralization of the extracellular matrix are still poorly understood. By using 3D electron tomography and high-resolution electron microscopy imaging and spectroscopy, it has been demonstrated that mineralization proceeds through a spherulitic-like crystal growth process. First, aggregates of disordered crystals form in the interfibrillar spaces, which lead to the mineralization of adjacent fibrils. Mineral propagates steadily through the inter- and intrafibrillar spaces of the collagen structure forming layered spherulites that grow to confluence. The structure of the collagen fibrils serves as a protein scaffold to guide the formation of a myriad of platelet-shaped crystallites that make up each of these spherulites. At their periphery, nanosized unmineralized areas remain, leading to the formation of the characteristic lacy pattern observed in the transversal cross-section of mature calcified tissues. This study provides fundamental insights into the bone formation process and represents a potential strategy for complex materials design.

Details

einblenden:
ausblenden:
Sprache(n): eng - English
 Datum: 2022-05-122022
 Publikationsstatus: Erschienen
 Seiten: -
 Ort, Verlag, Ausgabe: -
 Inhaltsverzeichnis: -
 Art der Begutachtung: -
 Identifikatoren: DOI: 10.1002/adfm.202200504
PMID: 0629
 Art des Abschluß: -

Veranstaltung

einblenden:

Entscheidung

einblenden:

Projektinformation

einblenden:

Quelle 1

einblenden:
ausblenden:
Titel: Advanced Functional Materials
  Kurztitel : Adv. Funct. Mater.
Genre der Quelle: Zeitschrift
 Urheber:
Affiliations:
Ort, Verlag, Ausgabe: Weinheim : Wiley-VCH Verlag GmbH
Seiten: - Band / Heft: 32 (31) Artikelnummer: 2200504 Start- / Endseite: - Identifikator: ISSN: 1616-301X