Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT
  Quasi-symmetry-protected topology in a semi-metal

Guo, C., Hu, L., Putzke, C., Diaz, J., Huang, X., Manna, K., et al. (2022). Quasi-symmetry-protected topology in a semi-metal. Nature Physics, 18(7), 813-818. doi:10.1038/s41567-022-01604-0.

Item is

Basisdaten

ausblenden:
Genre: Zeitschriftenartikel

Dateien

ausblenden: Dateien
:
suppl.zip (Ergänzendes Material), 29MB
Name:
suppl.zip
Beschreibung:
Supplementary information: Supplementary Figs. 1–28 and Supplementary Sections I–VII. | Source data: Source data for Fig. 2b; 3; 4c,d.
OA-Status:
Grün
Sichtbarkeit:
Öffentlich
MIME-Typ / Prüfsumme:
application/zip / [MD5]
Technische Metadaten:
Copyright Datum:
-
Copyright Info:
-
Lizenz:
-
:
2108.02279.pdf (Preprint), 41MB
Name:
2108.02279.pdf
Beschreibung:
Downloaded from arxiv.org: 2022-05-17
OA-Status:
Keine Angabe
Sichtbarkeit:
Öffentlich
MIME-Typ / Prüfsumme:
application/pdf / [MD5]
Technische Metadaten:
Copyright Datum:
2022
Copyright Info:
© the Author(s)
Lizenz:
-
:
s41567-022-01604-0.pdf (Verlagsversion), 3MB
 
Datei-Permalink:
-
Name:
s41567-022-01604-0.pdf
Beschreibung:
-
OA-Status:
Sichtbarkeit:
Privat
MIME-Typ / Prüfsumme:
application/pdf
Technische Metadaten:
Copyright Datum:
-
Copyright Info:
-
Lizenz:
-

Externe Referenzen

ausblenden:
externe Referenz:
https://doi.org/10.1038/s41567-022-01604-0 (Verlagsversion)
Beschreibung:
-
OA-Status:
Grün
externe Referenz:
https://arxiv.org/abs/2108.02279 (Preprint)
Beschreibung:
-
OA-Status:
Keine Angabe
externe Referenz:
https://doi.org/10.1038/s41567-022-01623-x (Ergänzendes Material)
Beschreibung:
News & Views article "Large curvature near a small gap" by M. A. Wilde & C. Pfleiderer
OA-Status:
Keine Angabe

Urheber

ausblenden:
 Urheber:
Guo, C.1, Autor
Hu, L.2, Autor
Putzke, C.1, 3, Autor           
Diaz, J.1, Autor
Huang, X.1, Autor
Manna, K.4, 5, Autor
Fan, F.-R.4, Autor
Shekhar, C.4, Autor
Sun, Y.4, Autor
Felser, C.4, Autor
Liu, C.2, 6, Autor
Bernevig, B. A.6, 7, 8, Autor
Moll, P. J. W.1, Autor
Affiliations:
1Laboratory of Quantum Materials (QMAT), Institute of Materials (IMX), École Polytechnique Fédérale de Lausanne (EPFL), ou_persistent22              
2Department of Physics, The Pennsylvania State University, ou_persistent22              
3Microstructured Quantum Matter Department, Max Planck Institute for the Structure and Dynamics of Matter, Max Planck Society, ou_3336858              
4Max Planck Institute for Chemical Physics of Solids, ou_persistent22              
5Department of Physics, Indian Institute of Technology Delhi, ou_persistent22              
6Department of Physics, Princeton University, ou_persistent22              
7Donostia International Physics Center, ou_persistent22              
8IKERBASQUE, Basque Foundation for Science, ou_persistent22              

Inhalt

ausblenden:
Schlagwörter: -
 Zusammenfassung: The crystal symmetry of a material dictates the type of topological band structure it may host, and therefore, symmetry is the guiding principle to find topological materials. Here we introduce an alternative guiding principle, which we call ‘quasi-symmetry’. This is the situation where a Hamiltonian has exact symmetry at a lower order that is broken by higher-order perturbation terms. This enforces finite but parametrically small gaps at some low-symmetry points in momentum space. Untethered from the restraints of symmetry, quasi-symmetries eliminate the need for fine tuning as they enforce that sources of large Berry curvature occur at arbitrary chemical potentials. We demonstrate that quasi-symmetry in the semi-metal CoSi stabilizes gaps below 2 meV over a large near-degenerate plane that can be measured in the quantum oscillation spectrum. The application of in-plane strain breaks the crystal symmetry and gaps the degenerate point, observable by new magnetic breakdown orbits. The quasi-symmetry, however, does not depend on spatial symmetries and hence transmission remains fully coherent. These results demonstrate a class of topological materials with increased resilience to perturbations such as strain-induced crystalline symmetry breaking, which may lead to robust topological applications as well as unexpected topology beyond the usual space group classifications.

Details

ausblenden:
Sprache(n): eng - English
 Datum: 2021-08-172022-03-312022-05-162022-07
 Publikationsstatus: Erschienen
 Seiten: 6
 Ort, Verlag, Ausgabe: -
 Inhaltsverzeichnis: -
 Art der Begutachtung: Expertenbegutachtung
 Identifikatoren: DOI: 10.1038/s41567-022-01604-0
arXiv: 2108.02279
 Art des Abschluß: -

Veranstaltung

einblenden:

Entscheidung

einblenden:

Projektinformation

ausblenden:
Projektname : -
Grant ID : 715730
Förderprogramm : Horizon 2020 (H2020)
Förderorganisation : European Commission (EC)
Projektname : -
Grant ID : 824123
Förderprogramm : Horizon 2020 (H2020)
Förderorganisation : European Commission (EC)
Projektname : -
Grant ID : 766566
Förderprogramm : Horizon 2020 (H2020)
Förderorganisation : European Commission (EC)
Projektname : -
Grant ID : 101020833
Förderprogramm : Horizon 2020 (H2020)
Förderorganisation : European Commission (EC)
Projektname : We would like to acknowledge J. Harms for the assistance on graphic design. This work was funded by the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (MiTopMat; grant agreement no. 715730). This project received funding by the Swiss National Science Foundation (grant no. PP00P2_176789). C.L. and L.H. are supported by the Office of Naval Research (grant no. N00014-18-1-2793) and Kaufman New Initiative research grant no. KA2018-98553 of the Pittsburgh Foundation. K.M. and C.F. acknowledge financial support from the ERC advanced grant no. 742068 ‘TOP-MAT’, European Union’s Horizon 2020 research and innovation programme (grant nos. 824123 and 766566) and Deutsche Forschungsgemeinschaft (DFG) through SFB 1143. Additionally, K.M. acknowledges Max Plank Society for funding support under Max Plank-India partner group project. B.A.B. acknowledges funding from the ERC under the European Union’s Horizon 2020 research and innovation programme (grant agreement no. 101020833). B.A.B. is also supported by the US Department of Energy (grant no. DE-SC0016239) and partially supported by the National Science Foundation (EAGER grant no. DMR 1643312), a Simons Investigator grant (no. 404513), the Office of Naval Research (ONR grant no. N00014-20-1-2303), the Packard Foundation, the Schmidt Fund for Innovative Research, the BSF Israel US foundation (grant no. 2018226), the Gordon and Betty Moore Foundation through grant no. GBMF8685 towards the Princeton theory program and a Guggenheim Fellowship from the John Simon Guggenheim Memorial Foundation. B.A.B. and C.L. are supported by the NSF-MERSEC (grant no. MERSEC DMR 2011750). B.A.B. gratefully acknowledges financial support from the Schmidt DataX Fund at Princeton University made possible through a major gift from the Schmidt Futures Foundation. B.A.B. received additional support from the Max Planck Society. Further support was provided by the NSF-MRSEC (no. DMR-1420541), BSF Israel US foundation (no. 2018226) and the Princeton Global Network Funds.
Grant ID : -
Förderprogramm : -
Förderorganisation : -

Quelle 1

ausblenden:
Titel: Nature Physics
  Andere : Nat. Phys.
Genre der Quelle: Zeitschrift
 Urheber:
Affiliations:
Ort, Verlag, Ausgabe: London : Nature Pub. Group
Seiten: - Band / Heft: 18 (7) Artikelnummer: - Start- / Endseite: 813 - 818 Identifikator: ISSN: 1745-2473
CoNE: https://pure.mpg.de/cone/journals/resource/1000000000025850