Help Privacy Policy Disclaimer
  Advanced SearchBrowse


  Transition of laser-induced terahertz spin currents from torque- to conduction-electron-mediated transport

Jiménez-Cavero, P., Gückstock, O., Nadvornik, L., Lucas, I., Seifert, T., Wolf, M., et al. (2022). Transition of laser-induced terahertz spin currents from torque- to conduction-electron-mediated transport. Physical Review B, 105(18): 184408. doi:10.1103/PhysRevB.105.184408.

Item is


show Files
hide Files
PhysRevB.105.184408.pdf (Publisher version), 880KB
MIME-Type / Checksum:
application/pdf / [MD5]
Technical Metadata:
Copyright Date:
Copyright Info:
The Author(s)




Jiménez-Cavero, Pilar1, 2, 3, 4, Author           
Gückstock, Oliver1, 2, Author           
Nadvornik, Lukas1, 2, 5, Author           
Lucas, Irene3, 4, Author
Seifert, Tom1, 2, Author           
Wolf, Martin2, Author           
Rouzegar, Reza1, 2, Author           
Brouwer, Piet W.1, Author
Becker, Sven6, Author
Jakob, Gerhard6, Author
Kläui, Mathias6, Author
Guo, Chenyang7, 8, Author
Wan, Caihua7, Author
Han, Xiufeng7, 8, Author
Jin, Zuanming9, 10, Author
Zhao, Hui11, Author
Wu, Di11, Author
Morellón, Luis3, 4, Author
Kampfrath, Tobias1, 2, Author           
1Department of Physics, Freie Universität Berlin, Arnimallee 14, 14195 Berlin, Germany, ou_persistent22              
2Physical Chemistry, Fritz Haber Institute, Max Planck Society, ou_634546              
3Instituto de Nanociencia y Materiales de Aragón (INMA), Universidad de Zaragoza-CSIC, Mariano Esquillor, Edificio I+D, 50018 Zaragoza, Spain, ou_persistent22              
4Departamento Física de la Materia Condensada, Universidad de Zaragoza, Pedro Cerbuna 12, 50009 Zaragoza, Spain, ou_persistent22              
5Faculty of Mathematics and Physics, Charles University, Ke Karlovu 3, 12116 Prague, Czech Republic, ou_persistent22              
6Institut für Physik, Johannes Gutenberg-Universität Mainz, 55128 Mainz, Germany, ou_persistent22              
7Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, University of Chinese Academy of Sciences, Beijing 100190, China, ou_persistent22              
8Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China, ou_persistent22              
9Shanghai Key Lab of Modern Optical Systems, University of Shanghai for Science and Technology, Shanghai 200093, China, ou_persistent22              
10Department of Physics, Shanghai University, Shanghai 200444, China, ou_persistent22              
11Department of Physics and National Laboratory of Solid State Microstructures, Nanjing University, Nanjing 210093, China, ou_persistent22              


Free keywords: -
 Abstract: Spin transport is crucial for future spintronic devices operating at bandwidths up to the terahertz range. In F|N thin-film stacks made of a ferromagnetic/ferrimagnetic layer F and a normal-metal layer N, spin transport is mediated by (1) spin-polarized conduction electrons and/or (2) torque between electron spins. To identify a crossover from (1) to (2), we study laser-driven spin currents in F|Pt stacks where F consists of model materials with different degrees of electrical conductivity. For the magnetic insulators yttrium iron garnet, gadolinium iron garnet (GIG) and γ−Fe2O3, identical dynamics is observed. It arises from the terahertz interfacial spin Seebeck effect (SSE), is fully determined by the relaxation of the electrons in the metal layer, and provides a rough estimate of the spin-mixing conductance of the GIG/Pt and γ−Fe2O3/Pt interfaces. Remarkably, in the half-metallic ferrimagnet Fe3O4 (magnetite), our measurements reveal two spin-current components with opposite direction. The slower, positive component exhibits SSE dynamics and is assigned to torque-type magnon excitation of the A- and B-spin sublattices of Fe3O4. The faster, negative component arises from the pyrospintronic effect and can consistently be assigned to ultrafast demagnetization of minority-spin hopping electrons. This observation supports the magneto-electronic model of Fe3O4. In general, our results provide a route to the contact-free separation of torque- and conduction-electron-mediated spin currents.


Language(s): eng - English
 Dates: 2022-03-172021-11-202022-04-252022-05-122022-05
 Publication Status: Issued
 Pages: 11
 Publishing info: -
 Table of Contents: -
 Rev. Type: Peer
 Identifiers: DOI: 10.1103/PhysRevB.105.184408
 Degree: -



Legal Case


Project information

show hide
Project name : TERAMAG - Ultrafast spin transport and magnetic order controlled by terahertz electromagnetic pulses
Grant ID : 681917
Funding program : Horizon 2020 (H2020)
Funding organization : European Commission (EC)

Source 1

Title: Physical Review B
  Abbreviation : Phys. Rev. B
Source Genre: Journal
Publ. Info: Woodbury, NY : American Physical Society
Pages: 11 Volume / Issue: 105 (18) Sequence Number: 184408 Start / End Page: - Identifier: ISSN: 1098-0121
CoNE: https://pure.mpg.de/cone/journals/resource/954925225008