English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT
  Spin-voltage-driven efficient terahertz spin currents from the magnetic Weyl semimetals Co2MnGa and Co2MnAl

Bierhance, G., Markou, A., Gueckstock, O., Rouzegar, R., Behovits, Y., Chekhov, A. L., et al. (2022). Spin-voltage-driven efficient terahertz spin currents from the magnetic Weyl semimetals Co2MnGa and Co2MnAl. Applied Physics Letters, 120(8): 082401, pp. 1-6. doi:10.1063/5.0080308.

Item is

Files

show Files

Locators

show

Creators

show
hide
 Creators:
Bierhance, Genaro1, Author
Markou, Anastasios2, Author           
Gueckstock, Oliver1, Author
Rouzegar, Reza1, Author
Behovits, Yannic1, Author
Chekhov, Alexander L.1, Author
Wolf, Martin1, Author
Seifert, Tom S.1, Author
Felser, Claudia3, Author           
Kampfrath, Tobias1, Author
Affiliations:
1External Organizations, ou_persistent22              
2Inorganic Chemistry, Max Planck Institute for Chemical Physics of Solids, Max Planck Society, ou_1863425              
3Claudia Felser, Inorganic Chemistry, Max Planck Institute for Chemical Physics of Solids, Max Planck Society, ou_1863429              

Content

show
hide
Free keywords: -
 Abstract: Magnetic Weyl semimetals are an emerging material class that combines magnetic order and a topologically non-trivial band structure. Here, we study ultrafast optically driven spin injection from thin films of the magnetic Weyl semimetals Co2MnGa and Co2MnAl into an adjacent Pt layer by means of terahertz emission spectroscopy. We find that (i) Co2MnGa and Co2MnAl are efficient terahertz spin-current generators reaching efficiencies of typical 3d-transition-metal ferromagnets such as Fe. (ii) The relaxation of the spin current provides an estimate of the electron-spin relaxation time of Co2MnGa (170 fs) and Co2MnAl (100 fs), which is comparable to Fe (90 fs). Both observations are consistent with a simple analytical model and highlight the large potential of magnetic Weyl semimetals as spin-current sources in terahertz spintronic devices. Finally, our results provide a strategy to identify magnetic materials that offer maximum spin-current amplitudes for a given deposited optical energy density. © 2022 Author(s).

Details

show
hide
Language(s): eng - English
 Dates: 2022-02-222022-02-22
 Publication Status: Issued
 Pages: -
 Publishing info: -
 Table of Contents: -
 Rev. Type: -
 Identifiers: DOI: 10.1063/5.0080308
 Degree: -

Event

show

Legal Case

show

Project information

show

Source 1

show
hide
Title: Applied Physics Letters
  Abbreviation : Appl. Phys. Lett.
Source Genre: Journal
 Creator(s):
Affiliations:
Publ. Info: Melville, NY : American Institute of Physics
Pages: - Volume / Issue: 120 (8) Sequence Number: 082401 Start / End Page: 1 - 6 Identifier: ISSN: 0003-6951
CoNE: https://pure.mpg.de/cone/journals/resource/954922836223