Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

EndNote (UTF-8)
 
DownloadE-Mail
  Accuracy and Precision in Electronic Structure Computation: Wien2k and FPLO

Richter, M., Kim, S.-J., Koepernik, K., Rosner, H., & Möbius, A. (2022). Accuracy and Precision in Electronic Structure Computation: Wien2k and FPLO. Computation, 10(2): 28, pp. 1-16. doi:10.3390/computation10020028.

Item is

Basisdaten

ausblenden:
Genre: Zeitschriftenartikel

Externe Referenzen

einblenden:

Urheber

ausblenden:
 Urheber:
Richter, Manuel1, Autor
Kim, Seo-Jin2, Autor           
Koepernik, Klaus1, Autor
Rosner, Helge2, Autor           
Möbius, Arnulf1, Autor
Affiliations:
1External Organizations, ou_persistent22              
2Physics of Quantum Materials, Max Planck Institute for Chemical Physics of Solids, Max Planck Society, ou_1863462              

Inhalt

ausblenden:
Schlagwörter: -
 Zusammenfassung: Electronic structure calculations in the framework of density functional theory are based on complex numerical codes which are used in a multitude of applications. Frequently, existing experimental information is used as a gauge for the reliability of such codes. However, their results depend both on the chosen exchange-correlation energy functional and on the specific numerical implementation of the Kohn-Sham equations. The only way to disentangle these two items is a direct comparison of two or more electronic structure codes. Here, we address the achievable numerical accuracy and numerical precision in the total energy computation of the two all-electron density-functional codes Wien2k and FPLO. Both codes are based on almost independent numerical implementations and largely differ in the representation of the Bloch wave function. Thus, it is a highly encouraging result that the total energy data obtained with both codes agree within less than 10¯6. We here relate the term numerical accuracy to the value of the total energy E, while the term numerical precision is related to the numerical noise of E as observed in total energy derivatives. We find that Wien2k achieves a slightly higher accuracy than FPLO at the price of a larger numerical effort. Further, we demonstrate that the FPLO code shows somewhat higher precision, i.e., less numerical noise in E than Wien2k, which is useful for the evaluation of physical properties based on derivatives of E. © 2022 by the authors. Licensee MDPI, Basel, Switzerland.

Details

ausblenden:
Sprache(n): eng - English
 Datum: 2022-02-112022-02-11
 Publikationsstatus: Erschienen
 Seiten: -
 Ort, Verlag, Ausgabe: -
 Inhaltsverzeichnis: -
 Art der Begutachtung: -
 Identifikatoren: DOI: 10.3390/computation10020028
BibTex Citekey: Richter2022
 Art des Abschluß: -

Veranstaltung

einblenden:

Entscheidung

einblenden:

Projektinformation

einblenden:

Quelle 1

ausblenden:
Titel: Computation
Genre der Quelle: Zeitschrift
 Urheber:
Affiliations:
Ort, Verlag, Ausgabe: Basel : MDPI
Seiten: - Band / Heft: 10 (2) Artikelnummer: 28 Start- / Endseite: 1 - 16 Identifikator: ISSN: 2079-3197
CoNE: https://pure.mpg.de/cone/journals/resource/2079-3197