Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

 
 
DownloadE-Mail
  Feasibility to Improve the Stability of Lithium-Rich Layered Oxides by Surface Doping

Liu, Z., Liu, S., Yang, L., Zhang, C., Shen, X., Zhang, Q., et al. (2022). Feasibility to Improve the Stability of Lithium-Rich Layered Oxides by Surface Doping. ACS Applied Materials and Interfaces, 14(16), 18353-18359. doi:10.1021/acsami.2c00155.

Item is

Basisdaten

einblenden: ausblenden:
Genre: Zeitschriftenartikel

Externe Referenzen

einblenden:

Urheber

einblenden:
ausblenden:
 Urheber:
Liu, Zepeng1, Autor
Liu, Shuai1, Autor
Yang, Lu1, Autor
Zhang, Chu1, Autor
Shen, Xi1, Autor
Zhang, Qinghua1, Autor
Lin, Hong-Ji1, Autor
Chen, Chin-Te1, Autor
Hu, Zhiwei2, Autor           
Yang, Yuan1, Autor
Ma, Jun1, Autor
Yu, Richeng1, Autor
Wang, Xuefeng1, Autor
Wang, Zhaoxiang1, Autor
Chen, Liquan1, Autor
Affiliations:
1External Organizations, ou_persistent22              
2Zhiwei Hu, Physics of Correlated Matter, Max Planck Institute for Chemical Physics of Solids, Max Planck Society, ou_1863461              

Inhalt

einblenden:
ausblenden:
Schlagwörter: Cathodes; Density functional theory; Electron energy levels; Electron energy loss spectroscopy; Electron scattering; Electronic structure; Energy dissipation; High resolution transmission electron microscopy; Lithium; Lithium compounds; Scanning electron microscopy; Titanium oxides; Transition metals; X ray absorption spectroscopy; Zirconium compounds, Cathodes material; Layered oxides; Li-rich layered oxide; Lithium-rich layered oxides; Oxygen retention; Rate performance; Specific capacities; Structured oxides; Surface doping; Voltage decay, Oxygen
 Zusammenfassung: Li-rich layer-structured oxides are considered promising cathode materials for their specific capacities above 250 mAh·g-1. However, the drawbacks such as poor rate performance, fast capacity fading, and the continuous transition metal (TM) migration into the Li layer hinder their commercial applications. To address these issues, surface doping of Ti and Zr was conducted to the Li- and Mn-rich layered oxide (LMR), Li1.2Mn0.54Ni0.13Co0.13O2. The drop of the average discharge potentials of the Ti- and Zr-doped LMR was reduced by 593 and 346 mV in 100 cycles, respectively. With aberration-corrected scanning transmission electron microscopy and electron energy loss spectroscopy, we clarified that Ti4+and Zr4+ions are located near the surface of the material, anchor the surface oxygen, and stabilize the LMR structure. The difference in the strengths of the Ti-O and Zr-O bonds and the doping-resultant electronic structures were determined with density functional theory (DFT) calculations and soft X-ray absorption spectroscopy (SXAS), responsible for the electrochemical performance of surface-doped materials. These findings verify our modification strategies to enhance the cycling performances of the promising LMR cathode materials. © 2022 American Chemical Society. All rights reserved.

Details

einblenden:
ausblenden:
Sprache(n): eng - English
 Datum: 2022-04-132022-04-13
 Publikationsstatus: Erschienen
 Seiten: -
 Ort, Verlag, Ausgabe: -
 Inhaltsverzeichnis: -
 Art der Begutachtung: -
 Identifikatoren: DOI: 10.1021/acsami.2c00155
BibTex Citekey: Liu202218353
 Art des Abschluß: -

Veranstaltung

einblenden:

Entscheidung

einblenden:

Projektinformation

einblenden:

Quelle 1

einblenden:
ausblenden:
Titel: ACS Applied Materials and Interfaces
  Kurztitel : ACS Appl. Mater. Interfaces
Genre der Quelle: Zeitschrift
 Urheber:
Affiliations:
Ort, Verlag, Ausgabe: Washington, DC : American Chemical Society
Seiten: - Band / Heft: 14 (16) Artikelnummer: - Start- / Endseite: 18353 - 18359 Identifikator: ISSN: 1944-8244
CoNE: https://pure.mpg.de/cone/journals/resource/1944-8244