Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT
  Computational design of metal-supported molecular switches: transient ion formation during light- and electron-induced isomerisation of azobenzene

Maurer, R. J., & Reuter, K. (2019). Computational design of metal-supported molecular switches: transient ion formation during light- and electron-induced isomerisation of azobenzene. Journal of Physics: Condensed Matter, 31(4): 044003. doi:10.1088/1361-648X/aaf0e1.

Item is

Basisdaten

einblenden: ausblenden:
Genre: Zeitschriftenartikel

Dateien

einblenden: Dateien
ausblenden: Dateien
:
item_3384475.pdf (Preprint), 3MB
Name:
item_3384475.pdf
Beschreibung:
arXiv:1808.04253v1
OA-Status:
Keine Angabe
Sichtbarkeit:
Öffentlich
MIME-Typ / Prüfsumme:
application/pdf / [MD5]
Technische Metadaten:
Copyright Datum:
2019
Copyright Info:
IoPP
Lizenz:
-

Externe Referenzen

einblenden:

Urheber

einblenden:
ausblenden:
 Urheber:
Maurer, Reinhard J1, Autor
Reuter, Karsten2, Autor           
Affiliations:
1Department of Chemistry, University of Warwick, Gibbet Hill Road, CV4 7AL, Coventry, United Kingdom, ou_persistent22              
2Chair for Theoretical Chemistry, Catalysis Research Center, Technische Universität München, ou_persistent22              

Inhalt

einblenden:
ausblenden:
Schlagwörter: -
 Zusammenfassung: In molecular nanotechnology, a single molecule is envisioned to act as the basic building block of electronic devices. Such devices may be of special interest for organic photovoltaics, data storage, and smart materials. However, more often than not the molecular function is quenched upon contact with a conducting support. Trial-and-error-based decoupling strategies via molecular functionalisation and change of substrate have in many instances proven to yield unpredictable results. The adsorbate-substrate interactions that govern the function can be understood with the help of first-principles simulation. Employing dispersion-corrected density-functional theory (DFT) and linear expansion delta-self-consistent-field DFT, the electronic structure of a prototypical surface-adsorbed functional molecule, namely azobenzene adsorbed to (1 1 1) single crystal facets of copper, silver and gold, is investigated and the main reasons for the loss or survival of the switching function upon adsorption are identified. The light-induced switching ability of a functionalised derivative of azobenzene on Au(1 1 1) and azobenzene on Ag(1 1 1) and Au(1 1 1) is assessed based on the excited-state potential energy landscapes of their transient molecular ions, which are believed to be the main intermediates of the experimentally observed isomerisation reaction. We provide a rationalisation of the experimentally observed function or lack thereof that connects to the underlying chemistry of the metal-surface interaction and provides insights into general design strategies for complex light-driven reactions at metal surfaces.

Details

einblenden:
ausblenden:
Sprache(n): eng - English
 Datum: 2018-11-062018-08-132018-11-142018-12-142019-01-30
 Publikationsstatus: Erschienen
 Seiten: 12
 Ort, Verlag, Ausgabe: -
 Inhaltsverzeichnis: -
 Art der Begutachtung: Expertenbegutachtung
 Identifikatoren: DOI: 10.1088/1361-648X/aaf0e1
 Art des Abschluß: -

Veranstaltung

einblenden:

Entscheidung

einblenden:

Projektinformation

einblenden:

Quelle 1

einblenden:
ausblenden:
Titel: Journal of Physics: Condensed Matter
  Kurztitel : J. Phys. Condens. Matter.
Genre der Quelle: Zeitschrift
 Urheber:
Affiliations:
Ort, Verlag, Ausgabe: Bristol : IOP Publishing
Seiten: 12 Band / Heft: 31 (4) Artikelnummer: 044003 Start- / Endseite: - Identifikator: ISSN: 0953-8984
CoNE: https://pure.mpg.de/cone/journals/resource/954928562478