English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT
 
 
DownloadE-Mail
  The *-Markov equation for Laurent polynomials

Cotti, G., & Varchenko, A. (2022). The *-Markov equation for Laurent polynomials. Moscow Mathematical Journal, 22(1), 1-68. doi:10.17323/1609-4514-2022-22-1-1-68.

Item is

Basic

show hide
Genre: Journal Article
Latex : The $*$-Markov equation for Laurent polynomials

Files

show Files
hide Files
:
2006.11753.pdf (Preprint), 846KB
 
File Permalink:
-
Name:
2006.11753.pdf
Description:
File downloaded from arXiv at 2022-05-23 11:25
OA-Status:
Visibility:
Private
MIME-Type / Checksum:
application/pdf
Technical Metadata:
Copyright Date:
-
Copyright Info:
-
:
Cotti-Varcheno_The Markov equation for Laurent polynomials_2022.pdf (Publisher version), 910KB
 
File Permalink:
-
Name:
Cotti-Varcheno_The Markov equation for Laurent polynomials_2022.pdf
Description:
-
OA-Status:
Visibility:
Restricted (Max Planck Institute for Mathematics, MBMT; )
MIME-Type / Checksum:
application/pdf
Technical Metadata:
Copyright Date:
-
Copyright Info:
-
License:
-

Locators

show
hide
Description:
-
OA-Status:
Not specified
Description:
-
OA-Status:
Green

Creators

show
hide
 Creators:
Cotti, Giordano1, Author           
Varchenko, Alexander, Author
Affiliations:
1Max Planck Institute for Mathematics, Max Planck Society, ou_3029201              

Content

show
hide
Free keywords: Mathematics, Algebraic Geometry, Mathematical Physics, Number Theory, Representation Theory
 Abstract: We consider the $*$-Markov equation for the symmetric Laurent polynomials in
three variables with integer coefficients, which is an equivariant analog of
the classical Markov equation for integers. We study how the properties of the
Markov equation and its solutions are reflected in the properties of the
$*$-Markov equation and its solutions.

Details

show
hide
Language(s): eng - English
 Dates: 2022
 Publication Status: Issued
 Pages: 68
 Publishing info: -
 Table of Contents: -
 Rev. Type: Peer
 Identifiers: arXiv: 2006.11753
DOI: 10.17323/1609-4514-2022-22-1-1-68
 Degree: -

Event

show

Legal Case

show

Project information

show

Source 1

show
hide
Title: Moscow Mathematical Journal
Source Genre: Journal
 Creator(s):
Affiliations:
Publ. Info: Independent University of Moscow
Pages: - Volume / Issue: 22 (1) Sequence Number: - Start / End Page: 1 - 68 Identifier: -