Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT
  Modeling the mind of a predator: Interactive cognitive maps enable avoidance of dynamic threats

Wise, T., Charpentier, C., Dayan, P., & Mobbs, D. (2022). Modeling the mind of a predator: Interactive cognitive maps enable avoidance of dynamic threats. In 5th Multidisciplinary Conference on Reinforcement Learning and Decision Making (RLDM 2022) (pp. 32-33). doi:10.31234/osf.io/6d4z7.

Item is

Basisdaten

ausblenden:
Genre: Konferenzbeitrag

Externe Referenzen

ausblenden:
externe Referenz:
https://rldm.org/wp-content/uploads/2021/04/program.pdf (Zusammenfassung)
Beschreibung:
-
OA-Status:
externe Referenz:
https://psyarxiv.com/6d4z7/download (beliebiger Volltext)
Beschreibung:
-
OA-Status:

Urheber

ausblenden:
 Urheber:
Wise, T, Autor
Charpentier, CJ, Autor
Dayan, P1, Autor           
Mobbs, D, Autor
Affiliations:
1Department of Computational Neuroscience, Max Planck Institute for Biological Cybernetics, Max Planck Society, ou_3017468              

Inhalt

ausblenden:
Schlagwörter: -
 Zusammenfassung: Successful avoidance of recurrent threats depends on inferring threatening agents’ preferences and predicting their movement
patterns accordingly. However, it remains largely unknown how humans achieve this, despite the fact that many natural
threats are posed by complex, dynamic agents that act according to their own goals. Here, we propose that humans exploit
an interactive cognitive map of the social environment to infer threatening agents’ preferences and also to simulate their
future behavior, providing for flexible, generalizable avoidance strategies. We tested this proposal across three preregistered
experiments (total n=510) using a task in which participants collected rewards while avoiding one of several possible virtual
threatening agents. A novel, model-based, hypothesis-testing inverse reinforcement learning computational model best explained
participants’ inferences about threatening agents’ latent preferences, with participants using this inferred knowledge
to enact generalizable, model-based avoidance strategies across different environments. Using tree-search planning models,
we found that participants’ behavior was best explained by a planning algorithm that incorporated simulations of the threat’s
goal-directed behavior, and that prior expectations about the threat’s predictability were linked to individual differences in
avoidance. Together, our results indicate that humans use a cognitive map to determine threatening agents’ preferences, in
turn facilitating generalized predictions of the threatening agent’s behavior and enabling flexible and effective avoidance.

Details

ausblenden:
Sprache(n):
 Datum: 2022-05
 Publikationsstatus: Online veröffentlicht
 Seiten: -
 Ort, Verlag, Ausgabe: -
 Inhaltsverzeichnis: -
 Art der Begutachtung: -
 Identifikatoren: DOI: 10.31234/osf.io/6d4z7
 Art des Abschluß: -

Veranstaltung

ausblenden:
Titel: 5th Multidisciplinary Conference on Reinforcement Learning and Decision Making (RLDM 2022)
Veranstaltungsort: Providence, RI, USA
Start-/Enddatum: 2022-06-08 - 2022-06-11

Entscheidung

einblenden:

Projektinformation

einblenden:

Quelle 1

ausblenden:
Titel: 5th Multidisciplinary Conference on Reinforcement Learning and Decision Making (RLDM 2022)
Genre der Quelle: Konferenzband
 Urheber:
Affiliations:
Ort, Verlag, Ausgabe: -
Seiten: - Band / Heft: - Artikelnummer: 1.49 Start- / Endseite: 32 - 33 Identifikator: -