Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

 
 
DownloadE-Mail
  A topological refactoring design strategy yields highly stable granulopoietic proteins

Skokowa, J., Hernandez Alvarez, B., Coles, M., Ritter, M., Nasri, M., Haaf, J., et al. (2022). A topological refactoring design strategy yields highly stable granulopoietic proteins. Nature Communications, 13(1): 2948. doi:10.1038/s41467-022-30157-2.

Item is

Basisdaten

einblenden: ausblenden:
Genre: Zeitschriftenartikel

Externe Referenzen

einblenden:

Urheber

einblenden:
ausblenden:
 Urheber:
Skokowa, J, Autor
Hernandez Alvarez, B1, 2, Autor           
Coles, M1, 3, Autor           
Ritter, M, Autor
Nasri, M, Autor
Haaf, J, Autor
Aghaallaei, N, Autor
Xu, Y, Autor
Mir, P, Autor
Krahl, A-C, Autor
Rogers, KW, Autor           
Maksymenko, K1, Autor           
Bajoghli, B, Autor
Welte, K, Autor
Lupas, AN1, Autor           
Müller, P, Autor           
ElGamacy, M1, Autor           
Affiliations:
1Department Protein Evolution, Max Planck Institute for Biology Tübingen, Max Planck Society, ou_3371683              
2Conservation of Protein Structure and Function Group, Department Protein Evolution, Max Planck Institute for Biology Tübingen, Max Planck Society, ou_3477388              
3Transmembrane Signal Transduction Group, Department Protein Evolution, Max Planck Institute for Biology Tübingen, Max Planck Society, ou_3477412              

Inhalt

einblenden:
ausblenden:
Schlagwörter: -
 Zusammenfassung: Protein therapeutics frequently face major challenges, including complicated production, instability, poor solubility, and aggregation. De novo protein design can readily address these challenges. Here, we demonstrate the utility of a topological refactoring strategy to design novel granulopoietic proteins starting from the granulocyte-colony stimulating factor (G-CSF) structure. We change a protein fold by rearranging the sequence and optimising it towards the new fold. Testing four designs, we obtain two that possess nanomolar activity, the most active of which is highly thermostable and protease-resistant, and matches its designed structure to atomic accuracy. While the designs possess starkly different sequence and structure from the native G-CSF, they show specific activity in differentiating primary human haematopoietic stem cells into mature neutrophils. The designs also show significant and specific activity in vivo. Our topological refactoring approach is largely independent of sequence or structural context, and is therefore applicable to a wide range of protein targets.

Details

einblenden:
ausblenden:
Sprache(n):
 Datum: 2022-05
 Publikationsstatus: Online veröffentlicht
 Seiten: -
 Ort, Verlag, Ausgabe: -
 Inhaltsverzeichnis: -
 Art der Begutachtung: -
 Identifikatoren: DOI: 10.1038/s41467-022-30157-2
PMID: 35618709
 Art des Abschluß: -

Veranstaltung

einblenden:

Entscheidung

einblenden:

Projektinformation

einblenden:

Quelle 1

einblenden:
ausblenden:
Titel: Nature Communications
  Kurztitel : Nat. Commun.
Genre der Quelle: Zeitschrift
 Urheber:
Affiliations:
Ort, Verlag, Ausgabe: London : Nature Publishing Group
Seiten: 17 Band / Heft: 13 (1) Artikelnummer: 2948 Start- / Endseite: - Identifikator: ISSN: 2041-1723
CoNE: https://pure.mpg.de/cone/journals/resource/2041-1723