English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT
  Structural reorientation and compaction of porous MoS2 coatings during wear testing

Krauß, S., Seynstahl, A., Tremmel, S., Meyer, B., Bitzek, E., Göken, M., et al. (2022). Structural reorientation and compaction of porous MoS2 coatings during wear testing. WEAR, 500-501: 204339. doi:10.1016/j.wear.2022.204339.

Item is

Files

show Files
hide Files
:
1-s2.0-S0043164822001041-main.pdf (Publisher version), 13MB
Name:
1-s2.0-S0043164822001041-main.pdf
Description:
-
OA-Status:
Not specified
Visibility:
Public
MIME-Type / Checksum:
application/pdf / [MD5]
Technical Metadata:
Copyright Date:
2022
Copyright Info:
The Authors. Published by Elsevier B.V.

Locators

show

Creators

show
hide
 Creators:
Krauß, Sebastian1, Author
Seynstahl, Armin2, Author
Tremmel, Stephan2, Author
Meyer, Bernd3, Author
Bitzek, Erik4, 5, Author           
Göken, Mathias6, Author           
Yokosawa, Tadahiro7, Author
Zubiri, Benjamin Apeleo7, Author
Spiecker, Erdmann8, Author           
Merle, Benoit1, Author
Affiliations:
1Materials Science & Engineering I and Interdisciplinary Center for Nanostructured Films (IZNF), Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Cauerstr. 3, 91058, Erlangen, Germany, ou_persistent22              
2Engineering Design and CAD, Universität Bayreuth, Universitätsstr. 30, 95447, Bayreuth, Germany, ou_persistent22              
3Interdisciplinary Center for Molecular Materials (ICMM) and Computer Chemistry Center (CCC), Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Nägelsbachstr. 25, 91052, Erlangen, Germany, ou_persistent22              
4Computational Materials Design, Max-Planck-Institut für Eisenforschung GmbH, Max Planck Society, ou_1863337              
5Department of Materials Science and Engineering, Institute i, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany, ou_persistent22              
6Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Materials Science and Engineering, Institute i, Martensstr. 5, 91058 Erlangen, Germany, ou_persistent22              
7Institute of Micro- and Nanostructure Research (IMN) & Center for Nanoanalysis and Electron Microscopy (CENEM), Interdisciplinary Center for Nanostructured Films (IZNF), Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Cauerstr. 3, 91058, Erlangen, Germany, ou_persistent22              
8Center for Nanoanalysis and Electron Microscopy, Friedrich-Alexander Universität Erlangen-Nürnberg, Cauerstr. 6, Erlangen, Germany, ou_persistent22              

Content

show
hide
Free keywords: Chemical vapor deposition; Coatings; Compaction; High resolution transmission electron microscopy; Layered semiconductors; Molybdenum compounds; Nanocrystals; Single crystals; Textures; Wear of materials, Basal textures; Coating microstructures; Nano indentation; Nanocrystallines; Physical vapor deposited; Structural compaction; Structural reorientation; Upscaling; Wear behaviors; Wear-testing, Tribology
 Abstract: Industrial upscaling frequently results in a different coating microstructure than the laboratory prototypes presented in the literature. Here, we investigate the wear behavior of physical vapor deposited (PVD) MoS2 coatings: A dense, nanocrystalline MoS2 coating, and a porous, prismatic-textured MoS2 coating. Transmission electron microscopy (TEM) investigations before and after wear testing evidence a crystallographic reorientation towards a basal texture in both samples. A basal texture is usually desirable due to its low-friction properties. This favorable reorientation is associated to a tribological compaction of the porous specimens. Following running-in, sliding under high contact pressure ultimately leads to a wear rate as small as for an ideal grown bulk MoS2 single crystal grown by chemical vapor deposition (CVD). This suggests that the imperfections of industrial grade MoS2 coatings can be remediated by a suitable pretreatment. © 2022 The Authors

Details

show
hide
Language(s): eng - English
 Dates: 2022-04-022022-07-15
 Publication Status: Issued
 Pages: -
 Publishing info: -
 Table of Contents: -
 Rev. Type: Peer
 Identifiers: DOI: 10.1016/j.wear.2022.204339
 Degree: -

Event

show

Legal Case

show

Project information

show hide
Project name : This research was funded by the German Research Foundation (DFG) Priority Program SPP 2074 “Fluid-free lubrication systems with high mechanical loads”, grant number (GEPRIS) 407707942 (ME 4368/7-1, ME 2670/8-1 and TR 1043/7-1). S.K. and E.B. acknowledge partial funding from the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation program (microKIc-Microscopic Origins of Fracture Toughness, grant agreement no. 725483). A. S. and S. T. thank S. Wartzack from Engineering Design (FAU) for the opportunity to use resources. This research used resources from the Center for Nanoanalysis and Electron Microscopy (CENEM) at Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU).
Grant ID : -
Funding program : -
Funding organization : -

Source 1

show
hide
Title: WEAR
  Other : Wear
Source Genre: Journal
 Creator(s):
Affiliations:
Publ. Info: Lausanne, Switzerland : Elsevier
Pages: - Volume / Issue: 500-501 Sequence Number: 204339 Start / End Page: - Identifier: ISSN: 0043-1648
CoNE: https://pure.mpg.de/cone/journals/resource/954925451857