Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

 
 
DownloadE-Mail
  Structural reorientation and compaction of porous MoS2 coatings during wear testing

Krauß, S., Seynstahl, A., Tremmel, S., Meyer, B., Bitzek, E., Göken, M., et al. (2022). Structural reorientation and compaction of porous MoS2 coatings during wear testing. WEAR, 500-501: 204339. doi:10.1016/j.wear.2022.204339.

Item is

Basisdaten

einblenden: ausblenden:
Genre: Zeitschriftenartikel

Dateien

einblenden: Dateien
ausblenden: Dateien
:
1-s2.0-S0043164822001041-main.pdf (Verlagsversion), 13MB
Name:
1-s2.0-S0043164822001041-main.pdf
Beschreibung:
-
OA-Status:
Keine Angabe
Sichtbarkeit:
Öffentlich
MIME-Typ / Prüfsumme:
application/pdf / [MD5]
Technische Metadaten:
Copyright Datum:
2022
Copyright Info:
The Authors. Published by Elsevier B.V.

Externe Referenzen

einblenden:

Urheber

einblenden:
ausblenden:
 Urheber:
Krauß, Sebastian1, Autor
Seynstahl, Armin2, Autor
Tremmel, Stephan2, Autor
Meyer, Bernd3, Autor
Bitzek, Erik4, 5, Autor           
Göken, Mathias6, Autor           
Yokosawa, Tadahiro7, Autor
Zubiri, Benjamin Apeleo7, Autor
Spiecker, Erdmann8, Autor           
Merle, Benoit1, Autor
Affiliations:
1Materials Science & Engineering I and Interdisciplinary Center for Nanostructured Films (IZNF), Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Cauerstr. 3, 91058, Erlangen, Germany, ou_persistent22              
2Engineering Design and CAD, Universität Bayreuth, Universitätsstr. 30, 95447, Bayreuth, Germany, ou_persistent22              
3Interdisciplinary Center for Molecular Materials (ICMM) and Computer Chemistry Center (CCC), Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Nägelsbachstr. 25, 91052, Erlangen, Germany, ou_persistent22              
4Computational Materials Design, Max-Planck-Institut für Eisenforschung GmbH, Max Planck Society, ou_1863337              
5Department of Materials Science and Engineering, Institute i, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany, ou_persistent22              
6Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Materials Science and Engineering, Institute i, Martensstr. 5, 91058 Erlangen, Germany, ou_persistent22              
7Institute of Micro- and Nanostructure Research (IMN) & Center for Nanoanalysis and Electron Microscopy (CENEM), Interdisciplinary Center for Nanostructured Films (IZNF), Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Cauerstr. 3, 91058, Erlangen, Germany, ou_persistent22              
8Center for Nanoanalysis and Electron Microscopy, Friedrich-Alexander Universität Erlangen-Nürnberg, Cauerstr. 6, Erlangen, Germany, ou_persistent22              

Inhalt

einblenden:
ausblenden:
Schlagwörter: Chemical vapor deposition; Coatings; Compaction; High resolution transmission electron microscopy; Layered semiconductors; Molybdenum compounds; Nanocrystals; Single crystals; Textures; Wear of materials, Basal textures; Coating microstructures; Nano indentation; Nanocrystallines; Physical vapor deposited; Structural compaction; Structural reorientation; Upscaling; Wear behaviors; Wear-testing, Tribology
 Zusammenfassung: Industrial upscaling frequently results in a different coating microstructure than the laboratory prototypes presented in the literature. Here, we investigate the wear behavior of physical vapor deposited (PVD) MoS2 coatings: A dense, nanocrystalline MoS2 coating, and a porous, prismatic-textured MoS2 coating. Transmission electron microscopy (TEM) investigations before and after wear testing evidence a crystallographic reorientation towards a basal texture in both samples. A basal texture is usually desirable due to its low-friction properties. This favorable reorientation is associated to a tribological compaction of the porous specimens. Following running-in, sliding under high contact pressure ultimately leads to a wear rate as small as for an ideal grown bulk MoS2 single crystal grown by chemical vapor deposition (CVD). This suggests that the imperfections of industrial grade MoS2 coatings can be remediated by a suitable pretreatment. © 2022 The Authors

Details

einblenden:
ausblenden:
Sprache(n): eng - English
 Datum: 2022-07-15
 Publikationsstatus: Erschienen
 Seiten: -
 Ort, Verlag, Ausgabe: -
 Inhaltsverzeichnis: -
 Art der Begutachtung: Expertenbegutachtung
 Identifikatoren: DOI: 10.1016/j.wear.2022.204339
 Art des Abschluß: -

Veranstaltung

einblenden:

Entscheidung

einblenden:

Projektinformation

einblenden: ausblenden:
Projektname : This research was funded by the German Research Foundation (DFG) Priority Program SPP 2074 “Fluid-free lubrication systems with high mechanical loads”, grant number (GEPRIS) 407707942 (ME 4368/7-1, ME 2670/8-1 and TR 1043/7-1). S.K. and E.B. acknowledge partial funding from the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation program (microKIc-Microscopic Origins of Fracture Toughness, grant agreement no. 725483). A. S. and S. T. thank S. Wartzack from Engineering Design (FAU) for the opportunity to use resources. This research used resources from the Center for Nanoanalysis and Electron Microscopy (CENEM) at Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU).
Grant ID : -
Förderprogramm : -
Förderorganisation : -

Quelle 1

einblenden:
ausblenden:
Titel: WEAR
  Andere : Wear
Genre der Quelle: Zeitschrift
 Urheber:
Affiliations:
Ort, Verlag, Ausgabe: Lausanne, Switzerland : Elsevier
Seiten: - Band / Heft: 500-501 Artikelnummer: 204339 Start- / Endseite: - Identifikator: ISSN: 0043-1648
CoNE: https://pure.mpg.de/cone/journals/resource/954925451857