English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT
  An Analysis of Spikes in Atmospheric Imaging Assembly (AIA) Data

Young, P. R., Viall, N. M., Kirk, M. S., Mason, E. I., & Chitta, L. P. (2021). An Analysis of Spikes in Atmospheric Imaging Assembly (AIA) Data. Solar Physics, 296: 181. doi:10.1007/s11207-021-01929-8.

Item is

Basic

show hide
Genre: Journal Article

Files

show Files

Locators

show

Creators

show
hide
 Creators:
Young, Peter R., Author
Viall, Nicholeen M., Author
Kirk, Michael S., Author
Mason, Emily I. , Author
Chitta, L. P.1, Author              
Affiliations:
1Department Sun and Heliosphere, Max Planck Institute for Solar System Research, Max Planck Society, ou_1832289              

Content

show
hide
Free keywords: -
 Abstract: The Atmospheric Imaging Assembly (AIA) onboard the Solar Dynamics Observatory (SDO) returns high-resolution images of the solar atmosphere in seven extreme ultraviolet (EUV) wavelength channels. The images are processed on the ground to remove intensity spikes arising from energetic particles hitting the instrument, and the despiked images are provided to the community. In this article, a three-hour series of images from the 171 Å channel obtained on 28 February 2017 was studied to investigate how often the despiking algorithm gave false positives caused by compact brightenings in the solar atmosphere. The latter were identified through spikes appearing in the same detector pixel for three consecutive frames. 1096 examples were found from the 900 image frames. These “three-spikes” were assigned to 126 dynamic solar features, and it is estimated that the three-spike method identifies 19% of the total number of features affected by despiking. For any ten-minute sequence of AIA 171 Å images there are around 37 solar features that have their intensity modified by despiking. The features are found in active regions, quiet Sun, and coronal holes and, in relation to solar surface area, there is a greater proportion within coronal holes. In 96% of the cases, the despiked structure is a compact brightening with a size of two arcsec or less, and the remaining 4% have narrow, elongated structures. By applying an EUV burst detection algorithm, we found that 96% of the events could be classified as EUV bursts. None of the spike events are rendered invisible by the AIA processing pipeline, but the total intensity over an event’s lifetime can be reduced by up to 67%. Users are recommended to always restore the original intensities in AIA data when studying short-lived or rapidly evolving features that exhibit fine-scale structure.

Details

show
hide
Language(s): eng - English
 Dates: 2021
 Publication Status: Published online
 Pages: -
 Publishing info: -
 Table of Contents: -
 Rev. Type: Peer
 Identifiers: DOI: 10.1007/s11207-021-01929-8
 Degree: -

Event

show

Legal Case

show

Project information

show

Source 1

show
hide
Title: Solar Physics
  Other : Sol. Phys.
Source Genre: Journal
 Creator(s):
Affiliations:
Publ. Info: Dordrecht, Holland : Kluwer, etc.
Pages: - Volume / Issue: 296 Sequence Number: 181 Start / End Page: - Identifier: ISSN: 0038-0938
CoNE: https://pure.mpg.de/cone/journals/resource/954925445694