English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT
  Toward a fast and consistent approach to modeling solar magnetic fields in multiple layers

Zhu, X., & Wiegelmann, T. (2022). Toward a fast and consistent approach to modeling solar magnetic fields in multiple layers. Astronomy and Astrophysics, 658: A37. doi:10.1051/0004-6361/202141505.

Item is

Basic

show hide
Genre: Journal Article

Files

show Files

Locators

show

Creators

show
hide
 Creators:
Zhu, X., Author
Wiegelmann, Thomas1, Author           
Affiliations:
1Department Sun and Heliosphere, Max Planck Institute for Solar System Research, Max Planck Society, ou_1832289              

Content

show
hide
Free keywords: Sun: magnetic fields / Sun: photosphere / Sun: chromosphere / Sun: corona
 Abstract: Aims. We aim to develop a fast and consistent extrapolation method for modeling multiple layers of the solar atmosphere. Methods. The new approach combines the magnetohydrostatic (MHS) extrapolation, which models the solar low atmosphere in a flat box, together with the nonlinear force-free field (NLFFF) extrapolation, which models the solar corona with a chromospheric vector magnetogram deduced from the MHS extrapolation. We tested our code with a snapshot of a radiative magnetohydrodynamic simulation of a solar flare and we conducted quantitative comparisons based on several metrics. Results. Following a number of test runs, we found an optimized configuration for the combination of two extrapolations with a 5.8-Mm-high box for the MHS extrapolation and a magnetogram at a height of 1 Mm for the NLFFF extrapolation. The new approach under this configuration has the capability to reconstruct the magnetic fields in multi-layers accurately and efficiently. Based on figures of merit that are used to assess the performance of different extrapolations (NLFFF extrapolation, MHS extrapolation, and the combined one), we find the combined extrapolation reaches the same level of accuracy as the MHS extrapolation and they are both better than the NLFFF extrapolation. The combined extrapolation is moderately efficient for application to magnetograms with high resolution.

Details

show
hide
Language(s): eng - English
 Dates: 2022
 Publication Status: Published online
 Pages: -
 Publishing info: -
 Table of Contents: -
 Rev. Type: Peer
 Identifiers: DOI: 10.1051/0004-6361/202141505
 Degree: -

Event

show

Legal Case

show

Project information

show

Source 1

show
hide
Title: Astronomy and Astrophysics
  Other : Astron. Astrophys.
Source Genre: Journal
 Creator(s):
Affiliations:
Publ. Info: Les Ulis Cedex A France : EDP Sciences
Pages: - Volume / Issue: 658 Sequence Number: A37 Start / End Page: - Identifier: ISSN: 1432-0746
ISSN: 0004-6361
CoNE: https://pure.mpg.de/cone/journals/resource/954922828219_1