English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT
  A solar coronal loop in a box: Energy generation and heating

Breu, C., Peter, H., Cameron, R. H., Solanki, S. K., Przybylski, D., Rempel, M., et al. (2022). A solar coronal loop in a box: Energy generation and heating. Astronomy and Astrophysics, 658: A45. doi:10.1051/0004-6361/202141451.

Item is

Basic

show hide
Genre: Journal Article

Files

show Files

Locators

show

Creators

show
hide
 Creators:
Breu, C.1, Author
Peter, Hardi1, Author              
Cameron, Robert H.1, Author              
Solanki, Sami K.1, Author              
Przybylski, D.1, Author
Rempel, M., Author
Chitta, L. P.1, Author              
Affiliations:
1Department Sun and Heliosphere, Max Planck Institute for Solar System Research, Max Planck Society, ou_1832289              

Content

show
hide
Free keywords: Sun: corona / Sun: magnetic fields / magnetohydrodynamics (MHD)
 Abstract: Context. Coronal loops are the basic building block of the upper solar atmosphere as seen in the extreme UV and X-rays. Comprehending how these are energized, structured, and evolve is key to understanding stellar coronae. Aims. Here we investigate how the energy to heat the loop is generated by photospheric magneto-convection, transported into the upper atmosphere, and how the internal structure of a coronal magnetic loop forms. Methods. In a 3D magnetohydrodynamics model, we study an isolated coronal loop rooted with both footpoints in a shallow layer within the convection zone using the MURaM code. To resolve its internal structure, we limited the computational domain to a rectangular box containing a single coronal loop as a straightened magnetic flux tube. Field-aligned heat conduction, gray radiative transfer in the photosphere and chromosphere, and optically thin radiative losses in the corona were taken into account. The footpoints were allowed to interact self-consistently with the granulation surrounding them. Results. The loop is heated by a Poynting flux that is self-consistently generated through small-scale motions within individual magnetic concentrations in the photosphere. Turbulence develops in the upper layers of the atmosphere as a response to the footpoint motions. We see little sign of heating by large-scale braiding of magnetic flux tubes from different photospheric concentrations at a given footpoint. The synthesized emission, as it would be observed by the Atmospheric Imaging Assembly or the X-Ray Telescope, reveals transient bright strands that form in response to the heating events. Overall, our model roughly reproduces the properties and evolution of the plasma as observed within (the substructures of) coronal loops. Conclusions. With this model we can build a coherent picture of how the energy flux to heat the upper atmosphere is generated near the solar surface and how this process drives and governs the heating and dynamics of a coronal loop.

Details

show
hide
Language(s): eng - English
 Dates: 2022
 Publication Status: Published online
 Pages: -
 Publishing info: -
 Table of Contents: -
 Rev. Type: Peer
 Identifiers: DOI: 10.1051/0004-6361/202141451
 Degree: -

Event

show

Legal Case

show

Project information

show

Source 1

show
hide
Title: Astronomy and Astrophysics
  Other : Astron. Astrophys.
Source Genre: Journal
 Creator(s):
Affiliations:
Publ. Info: Les Ulis Cedex A France : EDP Sciences
Pages: - Volume / Issue: 658 Sequence Number: A45 Start / End Page: - Identifier: ISSN: 1432-0746
ISSN: 0004-6361
CoNE: https://pure.mpg.de/cone/journals/resource/954922828219_1